Imidazolium-Catalyzed Synthesis of an Imidazolium Catalyst

The chemistry of imidazolium-catalyzed imidazolium synthesis was studied as part of an effort to develop a plausible prebiotic synthesis of a small catalytic molecule capable of catalyzing its own synthesis. Specifically, we investigated the one-pot 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) cata...

Full description

Saved in:
Bibliographic Details
Published inOrigins of life and evolution of biospheres Vol. 49; no. 4; pp. 199 - 211
Main Authors Weber, Arthur L., Rios, Andro C.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The chemistry of imidazolium-catalyzed imidazolium synthesis was studied as part of an effort to develop a plausible prebiotic synthesis of a small catalytic molecule capable of catalyzing its own synthesis. Specifically, we investigated the one-pot 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) catalyzed synthesis of 1,3-dibutyl-4,5-difuryl-imidazolium acetate (DBDFIM-Ac) from furfural, n-butylamine, formaldehyde, and acetic acid at 80 °C. Liu et al. ( 2012 ) had previously demonstrated the first reaction of the synthetic process, the EMIM-Ac catalyzed benzoin condensation of furfural that yields furoin. Our early studies established the second reaction of the synthetic process, the multicomponent reaction of furoin, n-butylamine, formaldehyde, and acetic acid that yields the imidazolium salt, DBDFIM-Ac. Studies of the complete two-reaction process that uses furfural for the synthesis of DBDFIM-Ac showed that the highest yield of DBDFIM-Ac was obtained when the mole ratio of n-butylamine, formaldehyde, and acetic acid relative to furfural was respectively (0.5:0.25:0.25:1.0-furfural), or one-half of the stoichiometric ratio (1.0:0.5:0.5:1.0-furfural). A time course study of the process showed transient formation of furoin, the obligatory reaction intermediate. DBDFIM-Ac and the imidazolium side product, 1,3-dibutyl-4,5-trifuryl-imidazolium acetate (DBTFIM-Ac), were stable under the reaction conditions. Imidazolium products (DBDFIM and DBTFIM) and the furoin intermediate were not formed in control reactions (80 °C, 24 h) in which EMIM catalyst was either absent or replaced with an equal volume of acetonitrile or DMF. The imidazolium product, DBDFIM-Ac, was shown to catalyze the synthesis of structurally similar 1,3-dipentyl-4,5-difuryl-imidazolium acetate (DPDFIM-Ac) from furfural, n-pentylamine, formaldehyde, and acetic acid at 80 °C.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-6149
1573-0875
DOI:10.1007/s11084-019-09589-2