Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves

SUMMARY Pseudomonas syringae pv. tomato is the causative agent of bacterial speck of tomato. The key virulence determinant of P. syringae is the hrp gene cluster, which encodes a type III secretion system. The type III system is used by a wide variety of pathogenic bacteria for transporting virulenc...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant pathology Vol. 3; no. 6; pp. 451 - 460
Main Authors Boureau, Tristan, Routtu, Jarkko, Roine, Elina, Taira, Suvi, Romantschuk, Martin
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.11.2002
Online AccessGet full text

Cover

Loading…
More Information
Summary:SUMMARY Pseudomonas syringae pv. tomato is the causative agent of bacterial speck of tomato. The key virulence determinant of P. syringae is the hrp gene cluster, which encodes a type III secretion system. The type III system is used by a wide variety of pathogenic bacteria for transporting virulence proteins from the bacteria directly into the eukaryotic host cell. Hrp pilus, which is composed of HrpA pilin subunits, is an indispensable component of the type III secretion system in P. syringae. Here we have determined the spatial and temporal expression pattern of hrpA of P. syringae DC3000 in intact leaves, using a HrpA‐GFP protein fusion and confocal microscopy. The hrpA gene was strongly and rapidly induced inside the leaf tissues after infiltration of the bacteria. After spray‐inoculation, hrpA‐induced bacteria were detected endophytically 72 h post‐inoculation, and 96 h after spray‐inoculation, disease symptoms appeared and GFP‐expressing bacteria were observed at symptom sites, both endo‐ and epiphytically. Live/dead staining of the bacteria showed that Pst DC3000 does not survive well on leaf surfaces. Apoplastic populations were apparently bursting on to the leaf surface through stomata. Kinetics of population sizes of wild‐type DC3000 and hrpA− showed significant differences, initially endophytically and only later epiphytically. Our results suggest that the Hrp pilus is first induced in the apoplast and apparently functions mainly inside the leaf tissues. These results suggest that P. syringae DC3000 mainly multiplies endophytically.
Bibliography:ark:/67375/WNG-H023ZP2M-G
ArticleID:MPP139
istex:D6F3F946697427A3A8CB5FE46BCC87C877CC50DC
Present address: Leiden University, Institute for Molecular Plant Sciences, Wassenaarseweg 64, 2333 AL Leiden, Netherlands.
ISSN:1464-6722
1364-3703
DOI:10.1046/j.1364-3703.2002.00139.x