Recent progress on flutter‐based wind energy harvesting

Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind ene...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical system dynamics Vol. 2; no. 1; pp. 82 - 98
Main Authors Li, Zhiyuan, Zhou, Shengxi, Yang, Zhichun
Format Journal Article
LanguageEnglish
Published Nanjing John Wiley & Sons, Inc 01.03.2022
Wiley
Subjects
Online AccessGet full text
ISSN2767-1402
2767-1399
2767-1402
DOI10.1002/msd2.12035

Cover

Abstract Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed.
AbstractList Abstract Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed.
Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed.
Author Zhou, Shengxi
Yang, Zhichun
Li, Zhiyuan
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Li
  fullname: Li, Zhiyuan
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Shengxi
  orcidid: 0000-0002-4034-193X
  surname: Zhou
  fullname: Zhou, Shengxi
  email: zhoushengxi@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Zhichun
  surname: Yang
  fullname: Yang, Zhichun
  organization: Northwestern Polytechnical University
BookMark eNp9kM1KxDAUhYMoqONsfIKCO6Gan7aZLMV_UAR_1iFNbmuGTqJJR5mdj-Az-iRmpgoi4upeLt-5nHO20brzDhDaJfiAYEwPZ9HQA0IxK9fQFuUVz0mB6fqPfRONY5ziBE8IYVW5hcQtaHB99hR8GyDGzLus6eZ9D-Hj7b1WEUz2ap3JwEFoF9mjCi8Qe-vaHbTRqC7C-GuO0MPZ6f3xRX51c355fHSV6yI5yUXNtMJ8QignIk0AMFoUXEBhKmp4WTQ1V0rgEgCXDKiGgiR3RpmmZk3JRuhy-Gu8msqnYGcqLKRXVq4OPrRShd7qDqQQGk-UYhXouqDMCM1BENyUNdYNpMQjtDf8SnGf5ymHnPp5cMm-ZFhQRkXFaaLwQOngYwzQSG171Vvv-qBsJwmWy77lsm-56jtJ9n9Jvo3-CZMBfrUdLP4h5fXdCR00n3KFkgI
CitedBy_id crossref_primary_10_1063_5_0239030
crossref_primary_10_1007_s42417_023_01126_w
crossref_primary_10_3390_app15031366
crossref_primary_10_1088_1361_6463_ac928e
crossref_primary_10_1088_1361_665X_ac6a2f
crossref_primary_10_3390_su151612187
crossref_primary_10_1007_s40430_025_05410_6
crossref_primary_10_1088_1361_6463_acbc30
crossref_primary_10_1016_j_jweia_2023_105349
crossref_primary_10_1016_j_oceaneng_2023_115240
crossref_primary_10_1002_adfm_202414324
crossref_primary_10_1016_j_cnsns_2022_107076
crossref_primary_10_1016_j_ymssp_2024_111552
crossref_primary_10_1016_j_jsv_2023_117951
crossref_primary_10_1016_j_chaos_2023_113962
crossref_primary_10_1016_j_nanoen_2024_110403
crossref_primary_10_1016_j_enconman_2024_118466
crossref_primary_10_1016_j_engstruct_2024_118799
crossref_primary_10_1016_j_nanoen_2023_109071
crossref_primary_10_1016_j_enconman_2023_117974
crossref_primary_10_3390_electronics13050852
crossref_primary_10_1016_j_apenergy_2023_122395
crossref_primary_10_1016_j_ast_2023_108815
crossref_primary_10_1016_j_enconman_2022_116405
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1007_s11071_023_08823_x
crossref_primary_10_1016_j_ymssp_2022_109689
crossref_primary_10_1109_MIM_2023_10121409
crossref_primary_10_3390_su152215773
crossref_primary_10_1002_ente_202301194
crossref_primary_10_1088_1361_6463_ace4d8
crossref_primary_10_2478_lpts_2025_0001
crossref_primary_10_1063_5_0240942
crossref_primary_10_1016_j_enconman_2024_119471
Cites_doi 10.3390/en13123101
10.1007/s11071-016-2979-7
10.1016/j.rser.2015.12.027
10.1117/12.2009818
10.1016/j.nanoen.2020.105279
10.3390/mi8060189
10.1016/j.ijmecsci.2020.105417
10.1002/aenm.201501799
10.1016/j.jfluidstructs.2017.06.009
10.1088/0964-1726/24/3/032001
10.1007/s11071-011-0035-1
10.1016/j.enconman.2018.07.044
10.1088/1361-665X/ab9238
10.1063/1.5100598
10.1016/j.eml.2017.07.005
10.1007/s11071-020-05633-3
10.1080/10584587.2020.1803672
10.1007/s40430-018-1509-6
10.1016/j.ast.2016.11.011
10.1007/s11071-011-0233-x
10.1177/1045389X17721027
10.1016/j.rser.2020.110473
10.1007/s10409-020-00928-5
10.1038/s41598-019-42128-7
10.1016/j.sna.2017.02.026
10.1177/1077546319844383
10.1088/1361-665X/aaede3
10.1016/j.ijengsci.2018.02.003
10.1016/j.energy.2021.121770
10.1109/TMECH.2016.2630732
10.1016/j.paerosci.2016.08.001
10.1115/SMASIS2009-1276
10.1117/12.2046408
10.1016/j.ymssp.2021.108507
10.1016/j.nanoen.2019.104379
10.1117/12.845784
10.1016/j.jsv.2015.09.043
10.1177/1045389X13498312
10.2514/1.J053108
10.1016/j.jfluidstructs.2014.01.002
10.1117/12.2009825
10.1016/j.jsv.2009.04.041
10.1016/j.apenergy.2014.07.077
10.1063/1.4959181
10.1109/NGCAS.2017.26
10.1115/SMASIS2012-7951
10.1016/j.paerosci.2013.11.001
10.1016/j.apenergy.2019.02.006
10.1063/1.4789433
10.1088/1742-6596/773/1/012021
10.1016/j.jfluidstructs.2017.02.006
10.1177/1045389X12443599
10.1063/1.3427405
10.2514/1.33803
10.1115/1.4042521
10.2514/3.7348
10.1038/ncomms5929
10.1063/1.4811408
10.1103/PhysRevApplied.3.014009
10.4028/www.scientific.net/AMM.225.97
10.1177/1077546321993585
10.1063/1.4816075
10.1016/j.ast.2018.05.056
10.3390/mi11100933
10.1177/1045389X16645954
10.1016/j.egypro.2017.12.051
10.1016/j.nanoen.2017.02.005
10.1088/0964-1726/20/9/094007
10.1016/j.apenergy.2019.113871
10.1016/j.ast.2017.02.013
10.1088/1361-665X/aa8b1e
10.1016/j.renene.2021.03.064
10.1016/j.ijmecsci.2021.106363
10.1016/j.jfluidstructs.2018.07.020
10.1016/j.ijengsci.2015.10.006
10.1016/j.renene.2016.12.067
10.1063/5.0051432
10.1016/j.expthermflusci.2014.05.017
10.1177/1045389X12461073
10.1016/j.rser.2017.01.073
10.1088/0964-1726/23/7/075024
10.1007/s11071-014-1355-8
10.1088/0964-1726/24/3/035004
10.1016/j.mee.2020.111333
10.1088/1361-665X/abf41f
10.1016/j.jsv.2013.04.009
10.1088/1361-665X/aacbbb
10.1016/j.nanoen.2020.104526
10.1016/j.expthermflusci.2013.08.010
10.3390/app9224823
10.1016/j.apenergy.2020.114902
10.1016/j.nanoen.2022.106990
10.1016/j.proeng.2017.09.489
10.1016/j.jsv.2021.116084
10.1016/j.jfluidstructs.2003.12.004
10.1115/1.4002788
10.1080/10584587.2020.1803681
10.1007/s11012-018-0875-6
10.1002/admt.201700317
10.1106/P1K4-8445-XJFE-XXH3
10.1007/s11071-012-0648-z
10.1016/j.proeng.2017.09.456
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/msd2.12035
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals (ND)
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-1402
EndPage 98
ExternalDocumentID oai_doaj_org_article_99c08aa36ecb423d9c7e910f5b0cfe11
10_1002_msd2_12035
MSD212035
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12072267
– fundername: Fundamental Research Funds for the Central Universities
  funderid: G2021KY0601
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  funderid: JCYJ20190806153615091
– fundername: 111 Project
  funderid: BP0719007
– fundername: Aeronautical Science Foundation of China
  funderid: 2019ZA027010
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
M7S
OK1
PIMPY
PTHSS
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c4035-9b3ca07812719078eeedc9479e4d62d754fb7aa905ee053e2ce41811dadfb3f53
IEDL.DBID 24P
ISSN 2767-1402
2767-1399
IngestDate Wed Aug 27 01:21:27 EDT 2025
Wed Aug 13 07:03:18 EDT 2025
Tue Jul 01 03:33:57 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:25:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4035-9b3ca07812719078eeedc9479e4d62d754fb7aa905ee053e2ce41811dadfb3f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4034-193X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12035
PQID 3092329672
PQPubID 6853477
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_99c08aa36ecb423d9c7e910f5b0cfe11
proquest_journals_3092329672
crossref_citationtrail_10_1002_msd2_12035
crossref_primary_10_1002_msd2_12035
wiley_primary_10_1002_msd2_12035_MSD212035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationTitle International journal of mechanical system dynamics
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 8
2021; 23
2016; 109
2018; 127
2013; 24
2013; 8688
2016; 100
2013; 71
2014; 25
2020; 13
2020; 11
2018; 82
2017; 199
2014; 133
2021; 30
2014; 67
2015; 9431
2014; 23
2022; 167
2017; 74
2018; 3
2014; 5
2017; 70
2018; 172
2017; 33
2013; 51
2000; 11
2019; 25
2020; 172
2009; 7493
2019; 28
2011; 20
2016; 86
2014; 57
2019; 114
2020; 211
2019; 239
2021; 198
2012; 68
2012; 67
2012; 23
2009; 326
2018; 79
1979; 17
2021; 8
2018; 29
2019; 9
2016; 9799
2021; 5
2017; 60
2015; 3
2014; 9057
2017; 28
2022; 95
2017; 27
2015; 53
2021; 502
2017; 22
2017; 65
2009
2013; 103
2020; 36
2014; 46
2013; 102
2020; 100
2020; 78
2020; 267
2019; 141
2012; 225
2017; 257
2018; 27
2016; 361
2011; 133
2016; 56
2015; 24
2016; 6
2017; 15
2004; 19
2019; 41
2021; 137
2020; 231
2020; 70
2017; 13
2013; 332
2021; 172
2008; 46
2016
2020; 68
2017; 142
2013
2018; 53
2010; 96
2014; 77
2017; 105
2019; 255
2020; 29
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
Boragno C (e_1_2_9_54_1) 2015
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
Chatterjee P (e_1_2_9_94_1) 2016
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
Zhao LC (e_1_2_9_8_1) 2021; 23
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 6
  issue: 5
  year: 2016
  article-title: Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy
  publication-title: Adv Energy Mater
– volume: 3
  issue: 1
  year: 2015
  article-title: Fluid‐solid‐electric lock‐in of energy‐harvesting piezoelectric flags
  publication-title: Phys Rev Appl
– volume: 255
  year: 2019
  article-title: Mechanical modulations for enhancing energy harvesting: principles, methods and applications
  publication-title: Appl Energy
– volume: 23
  start-page: 1131
  issue: 10
  year: 2012
  end-page: 1141
  article-title: Wake synergies enhance performance in aeroelastic vibration energy harvesting
  publication-title: J Intell Mater Syst Struct
– volume: 46
  start-page: 733
  issue: 3
  year: 2008
  end-page: 743
  article-title: Active control of nonlinear panel flutter using aeroelastic modes and piezoelectric actuators
  publication-title: AIAA J
– volume: 133
  issue: 1
  year: 2011
  article-title: Modeling and testing of a novel aeroelastic flutter energy harvester
  publication-title: J Vib Acoust
– volume: 13
  start-page: 3101
  issue: 12
  year: 2020
  article-title: Enhancing performance of a piezoelectric energy harvester system for concurrent flutter and vortex‐induced vibration
  publication-title: Energies
– volume: 67
  start-page: 925
  issue: 2
  year: 2012
  end-page: 939
  article-title: Modeling and analysis of piezoaeroelastic energy harvesters
  publication-title: Nonlinear Dyn
– volume: 225
  start-page: 97
  year: 2012
  end-page: 102
  article-title: Numerical investigation of flow‐induced vibration of a cantilever beam for a piezoelectric energy harvester
  publication-title: Appl Mech Mater
– volume: 7493
  year: 2009
– volume: 41
  start-page: 9
  issue: 1
  year: 2019
  article-title: A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis
  publication-title: J Braz Soc Mech Sci Eng
– volume: 46
  start-page: 174
  year: 2014
  end-page: 191
  article-title: A review on flow energy harvesters based on flapping foils
  publication-title: J Fluids Struct
– volume: 24
  start-page: 846
  issue: 7
  year: 2013
  end-page: 854
  article-title: Electroaeroelastic analysis of airfoil‐based wind energy harvesting using piezoelectric transduction and electromagnetic induction
  publication-title: J Intell Mater Syst Struct
– volume: 57
  start-page: 407
  year: 2014
  end-page: 419
  article-title: On the visualisation of flow structures downstream of fluttering piezoelectric energy harvesters in a tandem configuration
  publication-title: Exp Thermal Fluid Sci
– volume: 100
  start-page: 1963
  issue: 3
  year: 2020
  end-page: 1983
  article-title: Dynamics of the double‐beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping‐based vibration
  publication-title: Nonlin Dyn.
– volume: 127
  start-page: 162
  year: 2018
  end-page: 185
  article-title: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement
  publication-title: Int J Eng Sci
– volume: 74
  start-page: 1
  year: 2017
  end-page: 18
  article-title: A comprehensive review on vibration energy harvesting: modelling and realization
  publication-title: Renew Sustain Energy Rev
– volume: 33
  start-page: 476
  year: 2017
  end-page: 484
  article-title: Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy
  publication-title: Nano Energy
– volume: 22
  start-page: 1093
  issue: 2
  year: 2017
  end-page: 1103
  article-title: Synergy of wind energy harvesting and synchronized switch harvesting interface circuit
  publication-title: IEEE/ASME Trans Mechatron
– volume: 142
  start-page: 321
  year: 2017
  end-page: 327
  article-title: A study on the wind‐induced flutter energy harvester (WIFEH) integration into buildings
  publication-title: Energy Proc
– volume: 137
  year: 2021
  article-title: Hybrid energy harvesting technology: from materials, structural design, system integration to applications
  publication-title: Renew Sustain Energy Rev
– volume: 267
  year: 2020
  article-title: The state‐of‐the‐art review on energy harvesting from flow‐induced vibrations
  publication-title: Appl Energy
– volume: 9
  start-page: 4823
  issue: 22
  year: 2019
  article-title: A flutter‐based electromagnetic wind energy harvester: theory and experiments
  publication-title: Appl Sci
– volume: 29
  start-page: 653
  issue: 4
  year: 2018
  end-page: 668
  article-title: Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time‐dependent boundary conditions in supersonic airflow
  publication-title: J Intell Mater Syst Struct
– volume: 172
  year: 2020
  article-title: Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink
  publication-title: Int J Mech Sci
– volume: 9
  start-page: 5543
  year: 2019
  article-title: Frequency and voltage response of a wind‐driven fluttering triboelectric nanogenerator
  publication-title: Sci Rep
– volume: 326
  start-page: 263
  issue: 1
  year: 2009
  end-page: 276
  article-title: Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter‐mill
  publication-title: J Sound Vib
– volume: 68
  start-page: 519
  issue: 4
  year: 2012
  end-page: 530
  article-title: Design of piezoaeroelastic energy harvesters
  publication-title: Nonlin Dyn
– volume: 11
  start-page: 868
  issue: 11
  year: 2000
  end-page: 876
  article-title: Aeroelastic control of smart composite plate with delaminations
  publication-title: J Intell Mater Syst Struct
– volume: 71
  start-page: 159
  issue: 1
  year: 2013
  end-page: 173
  article-title: An analytical and experimental investigation into limit‐cycle oscillations of an aeroelastic system
  publication-title: Nonlinear Dyn
– volume: 25
  start-page: 401
  issue: 4
  year: 2014
  end-page: 416
  article-title: Aeroelastic characteristics of linear and nonlinear piezo‐aeroelastic energy harvester
  publication-title: J Intell Mater Syst Struct
– volume: 20
  issue: 9
  year: 2011
  article-title: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment
  publication-title: Smart Mater Struct
– volume: 8
  start-page: 189
  issue: 6
  year: 2017
  article-title: Parametric analysis and experimental verification of a hybrid vibration energy harvester combining piezoelectric and electromagnetic mechanisms
  publication-title: Micromachines
– volume: 28
  start-page: 163
  issue: 2
  year: 2017
  end-page: 177
  article-title: Energy harvesting for actuators and sensors using free‐floating flaps
  publication-title: J Intell Mater Syst Struct
– volume: 95
  year: 2022
  article-title: A self‐regulation strategy for triboelectric nanogenerator and self‐powered wind‐speed sensor
  publication-title: Nano Energy
– volume: 27
  issue: 1
  year: 2017
  article-title: Aeroelastic flutter energy harvesters self‐polarized by triboelectric effects
  publication-title: Smart Mater Struct
– volume: 5
  start-page: 4929
  issue: 1
  year: 2014
  article-title: Flutter‐driven triboelectrification for harvesting wind energy
  publication-title: Nat Commun
– volume: 51
  start-page: 279
  year: 2013
  end-page: 290
  article-title: Downstream flow structures of a fluttering piezoelectric energy harvester
  publication-title: Exp Thermal Fluid Sci
– year: 2016
– volume: 133
  start-page: 33
  year: 2014
  end-page: 39
  article-title: Broadband tristable energy harvester: modeling and experiment verification
  publication-title: Appl Energy
– volume: 100
  start-page: 112
  year: 2016
  end-page: 135
  article-title: Aeroelastic energy harvesting: a review
  publication-title: Int J Eng Sci
– volume: 67
  start-page: 2
  year: 2014
  end-page: 28
  article-title: A review of progress and challenges in flapping foil power generation
  publication-title: Prog Aerosp Sci
– volume: 30
  issue: 5
  year: 2021
  article-title: Influence of vehicle body vibration induced by road excitation on the performance of a vehicle‐mounted piezoelectric‐electromagnetic hybrid energy harvester
  publication-title: Smart Mater Struct
– volume: 28
  issue: 1
  year: 2019
  article-title: Nonlinear magnetic‐coupled flutter‐based aeroelastic energy harvester: modeling, simulation and experimental verification
  publication-title: Smart Mater Struct
– volume: 211
  start-page: 25
  issue: 1
  year: 2020
  end-page: 44
  article-title: A review on applications of piezoelectric materials in aerospace industry
  publication-title: Integr Ferroelectr
– volume: 11
  start-page: 933
  issue: 10
  year: 2020
  article-title: Performance evaluation of a piezoelectric energy harvester based on flag‐flutter
  publication-title: Micromachines
– volume: 27
  issue: 8
  year: 2018
  article-title: Aeroelastic‐photovoltaic ribbons for integrated wind and solar energy harvesting
  publication-title: Smart Mater Struct
– volume: 141
  issue: 3
  year: 2019
  article-title: Micropower generation using cross‐flow instabilities: a review of the literature and its implications
  publication-title: J Vibr Acoustics‐Trans ASME
– volume: 68
  year: 2020
  article-title: Flow‐induced snap‐through triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 9431
  year: 2015
– volume: 70
  start-page: 390
  year: 2017
  end-page: 402
  article-title: Energy harvesting from galloping of prisms: a wind tunnel experiment
  publication-title: J Fluids Struct
– volume: 103
  start-page: 033903
  issue: 3
  year: 2013
  end-page: 033942
  article-title: Performance enhancement of piezoelectric energy harvesters from wake galloping
  publication-title: Appl Phys Lett
– volume: 9799
  year: 2016
– volume: 56
  start-page: 1351
  year: 2016
  end-page: 1371
  article-title: A review on small scale wind turbines
  publication-title: Renew Sustain Energy Rev
– volume: 86
  start-page: 1599
  issue: 3
  year: 2016
  end-page: 1611
  article-title: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters
  publication-title: Nonlinear Dyn
– volume: 53
  start-page: 2807
  issue: 11‐12
  year: 2018
  end-page: 2831
  article-title: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter
  publication-title: Meccanica
– year: 2013
– volume: 198
  year: 2021
  article-title: Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting
  publication-title: Int J Mech Sci
– start-page: 339
  end-page: 359
– volume: 23
  year: 2021
  article-title: Dynamically synergistic regulation mechanism for rotation energy harvesting
  publication-title: Mech Systems Signal Proc
– volume: 23
  issue: 7
  year: 2014
  article-title: Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions
  publication-title: Smart Mater Struct
– volume: 25
  start-page: 1991
  issue: 14
  year: 2019
  end-page: 2007
  article-title: The effects of structural and aerodynamic nonlinearities on the energy harvesting from airfoil stall‐induced oscillations
  publication-title: J Vib Control
– volume: 65
  start-page: 78
  year: 2017
  end-page: 89
  article-title: Flutter suppression for highly flexible wings using passive and active piezoelectric effects
  publication-title: Aerospace Sci Technol
– volume: 60
  start-page: 203
  year: 2017
  end-page: 209
  article-title: Stability analysis on an aeroelastic system for design of a flutter energy harvester
  publication-title: Aerospace Sci Technol
– volume: 96
  year: 2010
  article-title: On the energy harvesting potential of piezoaeroelastic systems
  publication-title: Appl Phys Lett
– volume: 19
  start-page: 123
  issue: 2
  year: 2004
  end-page: 140
  article-title: Coupling of structure and wake oscillators in vortex‐induced vibrations
  publication-title: J Fluids Struct
– volume: 199
  start-page: 3474
  year: 2017
  end-page: 3479
  article-title: FLuttering energy harvester for autonomous powering (FLEHAP): aeroelastic characterisation and preliminary performance evaluation
  publication-title: Procedia Eng
– volume: 105
  start-page: 530
  year: 2017
  end-page: 538
  article-title: Fluttering conditions of an energy harvester for autonomous powering
  publication-title: Renew Energy
– volume: 3
  issue: 3
  year: 2018
  article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel
  publication-title: Adv Mater Technol.
– start-page: 611
  year: 2009
  end-page: 619
– volume: 79
  start-page: 297
  year: 2018
  end-page: 309
  article-title: A study on adaptive vibration control and energy conversion of highly flexible multifunctional wings
  publication-title: Aerospace Sci Technol
– volume: 211
  start-page: 132
  issue: 1
  year: 2020
  end-page: 151
  article-title: Modeling and design of a piezoelectric nonlinear aeroelastic energy harvester
  publication-title: Integr Ferroelectr
– volume: 24
  issue: 3
  year: 2015
  article-title: Enhanced aeroelastic energy harvesting with a beam stiffener
  publication-title: Smart Mater Struct
– volume: 53
  start-page: 394
  issue: 2
  year: 2015
  end-page: 404
  article-title: Three‐degree‐of‐freedom hybrid piezoelectric‐inductive aeroelastic energy harvester exploiting a control surface
  publication-title: AIAA J
– volume: 361
  start-page: 355
  year: 2016
  end-page: 377
  article-title: Fluttering energy harvesters in the wind: a review
  publication-title: J Sound Vib
– volume: 172
  start-page: 611
  year: 2018
  end-page: 618
  article-title: Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications
  publication-title: Energy Convers Manage
– volume: 86
  start-page: 28
  year: 2016
  end-page: 62
  article-title: Energy harvesting by means of flow‐induced vibrations on aerospace vehicles
  publication-title: Prog Aerosp Sci
– volume: 15
  start-page: 122
  year: 2017
  end-page: 129
  article-title: An aeroelastic flutter based triboelectric nanogenerator as a self‐powered active wind speed sensor in harsh environment
  publication-title: Extreme Mech Lett
– volume: 5
  year: 2021
  article-title: The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil
  publication-title: J Vib Control.
– volume: 29
  issue: 8
  year: 2020
  article-title: Performance enhancement for a magnetic‐coupled bi‐stable flutter‐based energy harvester
  publication-title: Smart Mater Struct
– volume: 24
  issue: 3
  year: 2015
  article-title: An electret‐based aeroelastic flutter energy harvester
  publication-title: Smart Mater Struct
– volume: 102
  issue: 24
  year: 2013
  article-title: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator
  publication-title: Appl Phys Lett
– volume: 109
  start-page: 033904
  issue: 3
  year: 2016
  end-page: 033942
  article-title: A broadband bi‐stable flow energy harvester based on the wake‐galloping phenomenon
  publication-title: Appl Phys Lett
– volume: 70
  year: 2020
  article-title: Wind energy harvesting based on fluttering double‐flag type triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 172
  start-page: 511
  year: 2021
  end-page: 563
  article-title: Investigation of frequency‐up conversion effect on the performance improvement of stack‐based piezoelectric generators
  publication-title: Renew Energy
– volume: 167
  year: 2022
  article-title: A theory for bistable vibration isolators
  publication-title: Mech Syst Signal Process
– volume: 77
  start-page: 967
  issue: 3
  year: 2014
  end-page: 981
  article-title: Piezoelectric energy harvesting from concurrent vortex‐induced vibrations and base excitations
  publication-title: Nonlin Dyn
– volume: 9057
  year: 2014
  article-title: Energy harvesting for self‐powered aerostructure actuation
  publication-title: Active and Passive Smart Structures and Integrated Systems
– volume: 17
  start-page: 365
  issue: 17
  year: 1979
  end-page: 374
  article-title: Unsteady aerodynamic modeling for arbitrary motions
  publication-title: AIAA J
– volume: 114
  start-page: 243902
  issue: 24
  year: 2019
  end-page: 243942
  article-title: Scavenging wind energy by a dynamic‐stable flutter energy harvester with rectangular wing
  publication-title: Appl Phys Lett
– volume: 231
  year: 2020
  article-title: Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode
  publication-title: Microelectron Eng
– volume: 78
  year: 2020
  article-title: A novel humidity resisting and wind direction adapting flag‐type triboelectric nanogenerator for wind energy harvesting and speed sensing
  publication-title: Nano Energy
– volume: 257
  start-page: 198
  year: 2017
  end-page: 207
  article-title: A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique
  publication-title: Sens Actuators, A
– volume: 82
  start-page: 492
  year: 2018
  end-page: 504
  article-title: On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow
  publication-title: J Fluids Struct
– volume: 8
  start-page: 031317
  issue: 3
  year: 2021
  end-page: 031342
  article-title: Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications
  publication-title: Appl Phys Rev
– volume: 13
  start-page: 21
  year: 2017
  end-page: 24
– volume: 199
  start-page: 3428
  year: 2017
  end-page: 3433
  article-title: FLuttering energy harvester for autonomous powering (FLEHAP): a synergy between EMc and dielectric elastomers generators
  publication-title: Procedia Eng
– volume: 102
  start-page: 044101
  issue: 4
  year: 2013
  end-page: 044142
  article-title: Hybrid piezoelectric‐inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling
  publication-title: Appl Phys Lett
– volume: 239
  start-page: 735
  year: 2019
  end-page: 746
  article-title: A water‐proof magnetically coupled piezoelectric‐electromagnetic hybrid wind energy harvester
  publication-title: Appl Energy
– volume: 502
  year: 2021
  article-title: A method for investigating aerodynamic load models of piezoaeroelastic energy harvester
  publication-title: J Sound Vib
– volume: 332
  start-page: 247
  issue: 20
  year: 2013
  end-page: 257
  article-title: Energy harvesting under combined aerodynamic and base excitations
  publication-title: J Sound Vib
– volume: 8688
  year: 2013
– volume: 74
  start-page: 111
  year: 2017
  end-page: 129
  article-title: Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: modeling and numerical analysis
  publication-title: J Fluids Struct
– volume: 36
  start-page: 592
  issue: 3
  year: 2020
  end-page: 605
  article-title: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
  publication-title: Acta Mech Sin
– ident: e_1_2_9_98_1
  doi: 10.3390/en13123101
– ident: e_1_2_9_82_1
  doi: 10.1007/s11071-016-2979-7
– ident: e_1_2_9_6_1
  doi: 10.1016/j.rser.2015.12.027
– ident: e_1_2_9_52_1
  doi: 10.1117/12.2009818
– ident: e_1_2_9_65_1
  doi: 10.1016/j.nanoen.2020.105279
– ident: e_1_2_9_87_1
  doi: 10.3390/mi8060189
– ident: e_1_2_9_107_1
  doi: 10.1016/j.ijmecsci.2020.105417
– ident: e_1_2_9_17_1
  doi: 10.1002/aenm.201501799
– ident: e_1_2_9_74_1
  doi: 10.1016/j.jfluidstructs.2017.06.009
– ident: e_1_2_9_16_1
– ident: e_1_2_9_76_1
  doi: 10.1088/0964-1726/24/3/032001
– ident: e_1_2_9_36_1
  doi: 10.1007/s11071-011-0035-1
– ident: e_1_2_9_93_1
  doi: 10.1016/j.enconman.2018.07.044
– ident: e_1_2_9_85_1
  doi: 10.1088/1361-665X/ab9238
– ident: e_1_2_9_86_1
  doi: 10.1063/1.5100598
– ident: e_1_2_9_31_1
  doi: 10.1016/j.eml.2017.07.005
– ident: e_1_2_9_13_1
  doi: 10.1007/s11071-020-05633-3
– ident: e_1_2_9_29_1
  doi: 10.1080/10584587.2020.1803672
– ident: e_1_2_9_43_1
  doi: 10.1007/s40430-018-1509-6
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ast.2016.11.011
– ident: e_1_2_9_44_1
  doi: 10.1007/s11071-011-0233-x
– ident: e_1_2_9_101_1
  doi: 10.1177/1045389X17721027
– ident: e_1_2_9_20_1
  doi: 10.1016/j.rser.2020.110473
– ident: e_1_2_9_12_1
  doi: 10.1007/s10409-020-00928-5
– ident: e_1_2_9_62_1
  doi: 10.1038/s41598-019-42128-7
– ident: e_1_2_9_88_1
  doi: 10.1016/j.sna.2017.02.026
– ident: e_1_2_9_80_1
  doi: 10.1177/1077546319844383
– start-page: 94310G
  volume-title: Active and Passive Smart Structures and Integrated Systems
  year: 2015
  ident: e_1_2_9_54_1
– ident: e_1_2_9_37_1
  doi: 10.1088/1361-665X/aaede3
– ident: e_1_2_9_83_1
  doi: 10.1016/j.ijengsci.2018.02.003
– ident: e_1_2_9_9_1
  doi: 10.1016/j.energy.2021.121770
– ident: e_1_2_9_71_1
  doi: 10.1109/TMECH.2016.2630732
– ident: e_1_2_9_28_1
  doi: 10.1016/j.paerosci.2016.08.001
– ident: e_1_2_9_61_1
  doi: 10.1115/SMASIS2009-1276
– ident: e_1_2_9_47_1
  doi: 10.1117/12.2046408
– ident: e_1_2_9_77_1
  doi: 10.1016/j.ymssp.2021.108507
– ident: e_1_2_9_73_1
  doi: 10.1016/j.nanoen.2019.104379
– ident: e_1_2_9_32_1
  doi: 10.1117/12.845784
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jsv.2015.09.043
– ident: e_1_2_9_78_1
  doi: 10.1177/1045389X13498312
– start-page: 979914
  volume-title: Active and Passive Smart Structures and Integrated Systems
  year: 2016
  ident: e_1_2_9_94_1
– ident: e_1_2_9_35_1
  doi: 10.2514/1.J053108
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jfluidstructs.2014.01.002
– ident: e_1_2_9_90_1
  doi: 10.1117/12.2009825
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jsv.2009.04.041
– volume: 23
  year: 2021
  ident: e_1_2_9_8_1
  article-title: Dynamically synergistic regulation mechanism for rotation energy harvesting
  publication-title: Mech Systems Signal Proc
– ident: e_1_2_9_81_1
  doi: 10.1016/j.apenergy.2014.07.077
– ident: e_1_2_9_14_1
  doi: 10.1063/1.4959181
– ident: e_1_2_9_56_1
  doi: 10.1109/NGCAS.2017.26
– ident: e_1_2_9_58_1
  doi: 10.1115/SMASIS2012-7951
– ident: e_1_2_9_25_1
  doi: 10.1016/j.paerosci.2013.11.001
– ident: e_1_2_9_3_1
  doi: 10.1016/j.apenergy.2019.02.006
– ident: e_1_2_9_91_1
  doi: 10.1063/1.4789433
– ident: e_1_2_9_68_1
  doi: 10.1088/1742-6596/773/1/012021
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jfluidstructs.2017.02.006
– ident: e_1_2_9_97_1
  doi: 10.1177/1045389X12443599
– ident: e_1_2_9_33_1
  doi: 10.1063/1.3427405
– ident: e_1_2_9_102_1
  doi: 10.2514/1.33803
– ident: e_1_2_9_21_1
  doi: 10.1115/1.4042521
– ident: e_1_2_9_42_1
  doi: 10.2514/3.7348
– ident: e_1_2_9_64_1
  doi: 10.1038/ncomms5929
– ident: e_1_2_9_46_1
  doi: 10.1063/1.4811408
– ident: e_1_2_9_23_1
  doi: 10.1103/PhysRevApplied.3.014009
– ident: e_1_2_9_70_1
  doi: 10.4028/www.scientific.net/AMM.225.97
– ident: e_1_2_9_108_1
  doi: 10.1177/1077546321993585
– ident: e_1_2_9_15_1
  doi: 10.1063/1.4816075
– ident: e_1_2_9_106_1
  doi: 10.1016/j.ast.2018.05.056
– ident: e_1_2_9_69_1
  doi: 10.3390/mi11100933
– ident: e_1_2_9_48_1
  doi: 10.1177/1045389X16645954
– ident: e_1_2_9_100_1
  doi: 10.1016/j.egypro.2017.12.051
– ident: e_1_2_9_19_1
  doi: 10.1016/j.nanoen.2017.02.005
– ident: e_1_2_9_79_1
  doi: 10.1088/0964-1726/20/9/094007
– ident: e_1_2_9_84_1
  doi: 10.1016/j.apenergy.2019.113871
– ident: e_1_2_9_105_1
  doi: 10.1016/j.ast.2017.02.013
– ident: e_1_2_9_30_1
  doi: 10.1088/1361-665X/aa8b1e
– ident: e_1_2_9_41_1
– ident: e_1_2_9_72_1
  doi: 10.1016/j.renene.2021.03.064
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ijmecsci.2021.106363
– ident: e_1_2_9_75_1
  doi: 10.1016/j.jfluidstructs.2018.07.020
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ijengsci.2015.10.006
– ident: e_1_2_9_57_1
  doi: 10.1016/j.renene.2016.12.067
– ident: e_1_2_9_104_1
  doi: 10.1063/5.0051432
– ident: e_1_2_9_51_1
  doi: 10.1016/j.expthermflusci.2014.05.017
– ident: e_1_2_9_34_1
  doi: 10.1177/1045389X12461073
– ident: e_1_2_9_2_1
  doi: 10.1016/j.rser.2017.01.073
– ident: e_1_2_9_89_1
  doi: 10.1088/0964-1726/23/7/075024
– ident: e_1_2_9_10_1
  doi: 10.1007/s11071-014-1355-8
– ident: e_1_2_9_66_1
  doi: 10.1088/0964-1726/24/3/035004
– ident: e_1_2_9_59_1
  doi: 10.1016/j.mee.2020.111333
– ident: e_1_2_9_95_1
  doi: 10.1088/1361-665X/abf41f
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jsv.2013.04.009
– ident: e_1_2_9_92_1
  doi: 10.1088/1361-665X/aacbbb
– ident: e_1_2_9_99_1
  doi: 10.1016/j.nanoen.2020.104526
– ident: e_1_2_9_55_1
  doi: 10.1016/j.expthermflusci.2013.08.010
– ident: e_1_2_9_67_1
  doi: 10.3390/app9224823
– ident: e_1_2_9_27_1
  doi: 10.1016/j.apenergy.2020.114902
– ident: e_1_2_9_5_1
  doi: 10.1016/j.nanoen.2022.106990
– ident: e_1_2_9_96_1
  doi: 10.1016/j.proeng.2017.09.489
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jsv.2021.116084
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jfluidstructs.2003.12.004
– ident: e_1_2_9_40_1
  doi: 10.1115/1.4002788
– ident: e_1_2_9_49_1
  doi: 10.1080/10584587.2020.1803681
– ident: e_1_2_9_50_1
  doi: 10.1007/s11012-018-0875-6
– ident: e_1_2_9_18_1
  doi: 10.1002/admt.201700317
– ident: e_1_2_9_103_1
  doi: 10.1106/P1K4-8445-XJFE-XXH3
– ident: e_1_2_9_39_1
  doi: 10.1007/s11071-012-0648-z
– ident: e_1_2_9_60_1
  doi: 10.1016/j.proeng.2017.09.456
SSID ssj0002811365
Score 2.4362085
SecondaryResourceType review_article
Snippet Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many...
Abstract Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 82
SubjectTerms Aeroelastic stability
Aeronautics
Alternative energy
dynamics
Eigenvalues
Energy harvesting
Flat plates
Flexible bodies
Flutter
Hybrid structures
Limit cycle oscillations
performance enhancement
Structural stability
Vibration
Vortices
wind energy harvesting
Wind power
working principle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ND)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SlS7EJ1arBHSjMDaTZCaTpU-KoBstdBfyVKROpa249RP8Rr_EJDOtI4hu3A1DFpdzJ3Nuwr3nAHBAMCG5IirRlMmEWl4kioVLHEUc8zuTGB27fG_yXp9eDbJBw-or9IRV8sAVcF3ONSqkJLnVylO_4ZpZT3EuU0g7W031Io4ah6nHeGUUvEqyuR4p7j5NDD5OMYq-bl8MFIX6v1WXzRo1kszlCliuq0N4UkW1ChZsuQaWGpqB64D7Qs8TBYyNVf43BUcldMNoN_3x9h5IycBXf9CGNk71wQc5jkoa5f0G6F9e3J31ktr_wAMXlCS5IloGMR7MPG2zwno-05wybqnJsWEZdYpJyVFmg8GDxdpST9ipkcZ5qDOyCVrlqLRbAEoiUaaUcikjVGJe5D4VThqbapflVrXB4QwToWtx8OBRMRSVrDEWAT8R8WuD_fna50oS48dVpwHa-YogYx1f-OSKOrnir-S2QWeWGFHvrYkgyBelmOcMt8FRTNYvYYjr23Mcn7b_I6AdsIjD_ENsQuuA1nT8Ynd9VTJVe_ED_ASWIeAh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsNAFB20bnQhPjFaJaAbhdhkJslkVuKrFkE3WuhumKcualrbils_wW_0S7wzTR-CdBfCEMKdmXtObu6cg9AJwYTkkshIpVREqWFFJKkr4khiKexMopXv8n3MW-30vpN1qoLbsGqrnOREn6h1T7kaeYPEQEUwyym-6L9HzjXK_V2tLDSW0UoCSOPWedG8m9ZYcOEcS1wXI6aQD4DssKlCKW68DTU-T3Dsnd5mmOSl-__wzXnW6mGnuYHWK74YXo4neBMtmXILrc2pCG4jBtQPoCP0rVaQuMJeGdquN6D--fp2MKXDT_j0Do0_5xe-ioHX1ihfdlC7eft83YoqRwQIpdOWZJIo4eR5MAUgp4UBhFMspcykOseaZqmVVAgWZ8ZZPhisTAoQnmihLQQ_I7uoVvZKs4dCQUScSSltQkkqMCtymBwrtEmUzXIjA3Q6iQlXlVy4c63o8rHQMeYuftzHL0DH07H9sUjGv6OuXGinI5ywtb_RG7zwap9wxlRcCEFyoyQwPc0UNcBobCZjZU2SBKg-mRhe7bYhn62NAJ35yVrwGvzh6Qb7q_3FzzpAq9iddfANZ3VUGw0-zCEwkJE88svsF4XG2Lc
  priority: 102
  providerName: ProQuest
Title Recent progress on flutter‐based wind energy harvesting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12035
https://www.proquest.com/docview/3092329672
https://doaj.org/article/99c08aa36ecb423d9c7e910f5b0cfe11
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsRAEC1cLnoQVxyXIaAXhdGku5NOgxe3UQRFXMBb0-t40IzMKF79BL_RL7G6JzMqiOAlhFCBUJXq97qpegWwSQmlhaa6ZRhXLeZE2dI8HOJo6jlmJrUmVvleFKe37OwuvxuDvWEvzEAfYnTgFjIjrtchwZXu736Jhj72LdnJSErzcZgMvbVhcANhl6MTFlKGeSWhhpFwXA2yWMpT65OS3a_XfyBSFO7_wTa_c9YIOu1ZmKnZYrI_CO8cjLlqHqa_aQgugEDih8CRxEIrXLaSbpX4hzh--uPtPYCUTV5x45242OWX3KteVNaoOotw2z6-OTxt1fMQ0JFBWVJoalQQ5yEcYZyXDvHNCMaFY7YglufMa66USHMXBj44YhxDAM-ssh5dn9MlmKi6lVuGRFGV5lprn3HKFBFlgaHxyrrM-LxwugFbQ59IU4uFh5kVD3Igc0xk8J-M_mvAxsj2aSCR8avVQXDtyCLIWscH3V5H1lkihTBpqRQtnNHI86ww3CGf8blOjXdZ1oC1YWBknWt9SVMkqUQUnDRgOwbrj8-Q59dHJN6t_Md4FaZI6HuIxWdrMPHce3HryEaedTP-dHgt2ydNmDw4vri8asad_SdtkNy5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V2wNwQPyKhQKRgANIoYntxPEBIUpbbWm7QtBKvbn-LYeSLbtFFTcegSfhoXgSZrzJtkiot96iyIqc8XjmizPzfQDPOeO8ttzmTkiTi6Ca3Eo6xLE8StyZ3LtU5TuuR_viw0F1sAS_-14YKqvsY2IK1H7i6Ix8lRcIRZiqJXt78i0n1Sj6u9pLaMzdYjv8OMNPttmbrXVc3xeMbW7svR_lnaoATof4GZXlzhDFDZOYDGUTMEs4JaQKwtfMy0pEK41RRRVINiEwFwSmwdIbH_EFSCUCQ_6yoI7WASyvbYw_flqc6rCGNFKobpJJjEAIr9SCE5Wtfp159rpkRdKWO8-CSSzgH4R7ESenRLd5C252CDV7N3ep27AU2jtw4wJv4V1QCDYxWWWpuAtDZTZps3icJK___PxFidFnZ_ixn4XUWZh9MdPE5tEe3YP9K7HWfRi0kzY8gMxwU1TW2lhKLgxTTY3uEI0PpYtVHewQXvY20a4jKCedjGM9p1Zmmuynk_2G8Gwx9mROy_HfUWtk2sUIotJONybTI93tTK2UKxpjeB2cRWzplZMBMVSsbOFiKMshrPQLo7v9PdPn3jiEV2mxLpmG3v28ztLVw8uf9RSujfZ2d_TO1nj7EVxn1GmRyt1WYHA6_R4eI_45tU86p8vg8Kr9_C_tPhcp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfGJ9FvSisG6bpE0DXnwtvhF0YW8hz_WwdmVVvPoT_I3-EpNsd3VBBG-lTKHMZPJ9TWe-AdjBCONcYllThIoaMayoSeoPcSS21GUm1ipU-d7kZ01y0cpaY3Aw6IXp60MMD9x8ZoT92if4k7b1b9HQx2eN9lOU4GwcJv3fPp-WiNwOT1hQ4eeV-BpGRN1ukIZSnkqfFNW_Hx9BpCDcP8I2f3LWADqNOZit2GJ82A_vPIyZcgFmfmgILgJzxM8BRxwKrdy2FXfL2HbC-OnP9w8PUjp-cx_esQldfvGD6AVljbK9BM3G6f3xWa2ah-Ac6ZUlmcRKeHEeRB2M08I4fFOMUGaIzpGmGbGSCsGSzPiBDwYpQxyAp1po61yf4WWYKLulWYFYYJFkUkqbUkwEYkXuQmOFNqmyWW5kBLsDn3BViYX7mRUd3pc5Rtz7jwf_RbA9tH3qS2T8anXkXTu08LLW4Ua31-ZVlnDGVFIIgXOjpON5milqHJ-xmUyUNWkawfogMLzKtWeOE0dSEcspimAvBOuP1-DXdycoXK3-x3gLpm5PGvzq_OZyDaaRb4EIdWjrMPHSezUbjpi8yM2w_r4A5_vb4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+flutter%E2%80%90based+wind+energy+harvesting&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Li%2C+Zhiyuan&rft.au=Zhou%2C+Shengxi&rft.au=Yang%2C+Zhichun&rft.date=2022-03-01&rft.issn=2767-1402&rft.eissn=2767-1402&rft.volume=2&rft.issue=1&rft.spage=82&rft.epage=98&rft_id=info:doi/10.1002%2Fmsd2.12035&rft.externalDBID=10.1002%252Fmsd2.12035&rft.externalDocID=MSD212035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon