Recent progress on flutter‐based wind energy harvesting
Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind ene...
Saved in:
Published in | International journal of mechanical system dynamics Vol. 2; no. 1; pp. 82 - 98 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Nanjing
John Wiley & Sons, Inc
01.03.2022
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2767-1402 2767-1399 2767-1402 |
DOI | 10.1002/msd2.12035 |
Cover
Abstract | Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed. |
---|---|
AbstractList | Abstract Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed. Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed. |
Author | Zhou, Shengxi Yang, Zhichun Li, Zhiyuan |
Author_xml | – sequence: 1 givenname: Zhiyuan surname: Li fullname: Li, Zhiyuan organization: Northwestern Polytechnical University – sequence: 2 givenname: Shengxi orcidid: 0000-0002-4034-193X surname: Zhou fullname: Zhou, Shengxi email: zhoushengxi@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 3 givenname: Zhichun surname: Yang fullname: Yang, Zhichun organization: Northwestern Polytechnical University |
BookMark | eNp9kM1KxDAUhYMoqONsfIKCO6Gan7aZLMV_UAR_1iFNbmuGTqJJR5mdj-Az-iRmpgoi4upeLt-5nHO20brzDhDaJfiAYEwPZ9HQA0IxK9fQFuUVz0mB6fqPfRONY5ziBE8IYVW5hcQtaHB99hR8GyDGzLus6eZ9D-Hj7b1WEUz2ap3JwEFoF9mjCi8Qe-vaHbTRqC7C-GuO0MPZ6f3xRX51c355fHSV6yI5yUXNtMJ8QignIk0AMFoUXEBhKmp4WTQ1V0rgEgCXDKiGgiR3RpmmZk3JRuhy-Gu8msqnYGcqLKRXVq4OPrRShd7qDqQQGk-UYhXouqDMCM1BENyUNdYNpMQjtDf8SnGf5ymHnPp5cMm-ZFhQRkXFaaLwQOngYwzQSG171Vvv-qBsJwmWy77lsm-56jtJ9n9Jvo3-CZMBfrUdLP4h5fXdCR00n3KFkgI |
CitedBy_id | crossref_primary_10_1063_5_0239030 crossref_primary_10_1007_s42417_023_01126_w crossref_primary_10_3390_app15031366 crossref_primary_10_1088_1361_6463_ac928e crossref_primary_10_1088_1361_665X_ac6a2f crossref_primary_10_3390_su151612187 crossref_primary_10_1007_s40430_025_05410_6 crossref_primary_10_1088_1361_6463_acbc30 crossref_primary_10_1016_j_jweia_2023_105349 crossref_primary_10_1016_j_oceaneng_2023_115240 crossref_primary_10_1002_adfm_202414324 crossref_primary_10_1016_j_cnsns_2022_107076 crossref_primary_10_1016_j_ymssp_2024_111552 crossref_primary_10_1016_j_jsv_2023_117951 crossref_primary_10_1016_j_chaos_2023_113962 crossref_primary_10_1016_j_nanoen_2024_110403 crossref_primary_10_1016_j_enconman_2024_118466 crossref_primary_10_1016_j_engstruct_2024_118799 crossref_primary_10_1016_j_nanoen_2023_109071 crossref_primary_10_1016_j_enconman_2023_117974 crossref_primary_10_3390_electronics13050852 crossref_primary_10_1016_j_apenergy_2023_122395 crossref_primary_10_1016_j_ast_2023_108815 crossref_primary_10_1016_j_enconman_2022_116405 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1007_s11071_023_08823_x crossref_primary_10_1016_j_ymssp_2022_109689 crossref_primary_10_1109_MIM_2023_10121409 crossref_primary_10_3390_su152215773 crossref_primary_10_1002_ente_202301194 crossref_primary_10_1088_1361_6463_ace4d8 crossref_primary_10_2478_lpts_2025_0001 crossref_primary_10_1063_5_0240942 crossref_primary_10_1016_j_enconman_2024_119471 |
Cites_doi | 10.3390/en13123101 10.1007/s11071-016-2979-7 10.1016/j.rser.2015.12.027 10.1117/12.2009818 10.1016/j.nanoen.2020.105279 10.3390/mi8060189 10.1016/j.ijmecsci.2020.105417 10.1002/aenm.201501799 10.1016/j.jfluidstructs.2017.06.009 10.1088/0964-1726/24/3/032001 10.1007/s11071-011-0035-1 10.1016/j.enconman.2018.07.044 10.1088/1361-665X/ab9238 10.1063/1.5100598 10.1016/j.eml.2017.07.005 10.1007/s11071-020-05633-3 10.1080/10584587.2020.1803672 10.1007/s40430-018-1509-6 10.1016/j.ast.2016.11.011 10.1007/s11071-011-0233-x 10.1177/1045389X17721027 10.1016/j.rser.2020.110473 10.1007/s10409-020-00928-5 10.1038/s41598-019-42128-7 10.1016/j.sna.2017.02.026 10.1177/1077546319844383 10.1088/1361-665X/aaede3 10.1016/j.ijengsci.2018.02.003 10.1016/j.energy.2021.121770 10.1109/TMECH.2016.2630732 10.1016/j.paerosci.2016.08.001 10.1115/SMASIS2009-1276 10.1117/12.2046408 10.1016/j.ymssp.2021.108507 10.1016/j.nanoen.2019.104379 10.1117/12.845784 10.1016/j.jsv.2015.09.043 10.1177/1045389X13498312 10.2514/1.J053108 10.1016/j.jfluidstructs.2014.01.002 10.1117/12.2009825 10.1016/j.jsv.2009.04.041 10.1016/j.apenergy.2014.07.077 10.1063/1.4959181 10.1109/NGCAS.2017.26 10.1115/SMASIS2012-7951 10.1016/j.paerosci.2013.11.001 10.1016/j.apenergy.2019.02.006 10.1063/1.4789433 10.1088/1742-6596/773/1/012021 10.1016/j.jfluidstructs.2017.02.006 10.1177/1045389X12443599 10.1063/1.3427405 10.2514/1.33803 10.1115/1.4042521 10.2514/3.7348 10.1038/ncomms5929 10.1063/1.4811408 10.1103/PhysRevApplied.3.014009 10.4028/www.scientific.net/AMM.225.97 10.1177/1077546321993585 10.1063/1.4816075 10.1016/j.ast.2018.05.056 10.3390/mi11100933 10.1177/1045389X16645954 10.1016/j.egypro.2017.12.051 10.1016/j.nanoen.2017.02.005 10.1088/0964-1726/20/9/094007 10.1016/j.apenergy.2019.113871 10.1016/j.ast.2017.02.013 10.1088/1361-665X/aa8b1e 10.1016/j.renene.2021.03.064 10.1016/j.ijmecsci.2021.106363 10.1016/j.jfluidstructs.2018.07.020 10.1016/j.ijengsci.2015.10.006 10.1016/j.renene.2016.12.067 10.1063/5.0051432 10.1016/j.expthermflusci.2014.05.017 10.1177/1045389X12461073 10.1016/j.rser.2017.01.073 10.1088/0964-1726/23/7/075024 10.1007/s11071-014-1355-8 10.1088/0964-1726/24/3/035004 10.1016/j.mee.2020.111333 10.1088/1361-665X/abf41f 10.1016/j.jsv.2013.04.009 10.1088/1361-665X/aacbbb 10.1016/j.nanoen.2020.104526 10.1016/j.expthermflusci.2013.08.010 10.3390/app9224823 10.1016/j.apenergy.2020.114902 10.1016/j.nanoen.2022.106990 10.1016/j.proeng.2017.09.489 10.1016/j.jsv.2021.116084 10.1016/j.jfluidstructs.2003.12.004 10.1115/1.4002788 10.1080/10584587.2020.1803681 10.1007/s11012-018-0875-6 10.1002/admt.201700317 10.1106/P1K4-8445-XJFE-XXH3 10.1007/s11071-012-0648-z 10.1016/j.proeng.2017.09.456 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/msd2.12035 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals (ND) |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2767-1402 |
EndPage | 98 |
ExternalDocumentID | oai_doaj_org_article_99c08aa36ecb423d9c7e910f5b0cfe11 10_1002_msd2_12035 MSD212035 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12072267 – fundername: Fundamental Research Funds for the Central Universities funderid: G2021KY0601 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality funderid: JCYJ20190806153615091 – fundername: 111 Project funderid: BP0719007 – fundername: Aeronautical Science Foundation of China funderid: 2019ZA027010 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ M7S OK1 PIMPY PTHSS AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c4035-9b3ca07812719078eeedc9479e4d62d754fb7aa905ee053e2ce41811dadfb3f53 |
IEDL.DBID | 24P |
ISSN | 2767-1402 2767-1399 |
IngestDate | Wed Aug 27 01:21:27 EDT 2025 Wed Aug 13 07:03:18 EDT 2025 Tue Jul 01 03:33:57 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Jan 22 16:25:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4035-9b3ca07812719078eeedc9479e4d62d754fb7aa905ee053e2ce41811dadfb3f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4034-193X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12035 |
PQID | 3092329672 |
PQPubID | 6853477 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_99c08aa36ecb423d9c7e910f5b0cfe11 proquest_journals_3092329672 crossref_citationtrail_10_1002_msd2_12035 crossref_primary_10_1002_msd2_12035 wiley_primary_10_1002_msd2_12035_MSD212035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing |
PublicationTitle | International journal of mechanical system dynamics |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 8 2021; 23 2016; 109 2018; 127 2013; 24 2013; 8688 2016; 100 2013; 71 2014; 25 2020; 13 2020; 11 2018; 82 2017; 199 2014; 133 2021; 30 2014; 67 2015; 9431 2014; 23 2022; 167 2017; 74 2018; 3 2014; 5 2017; 70 2018; 172 2017; 33 2013; 51 2000; 11 2019; 25 2020; 172 2009; 7493 2019; 28 2011; 20 2016; 86 2014; 57 2019; 114 2020; 211 2019; 239 2021; 198 2012; 68 2012; 67 2012; 23 2009; 326 2018; 79 1979; 17 2021; 8 2018; 29 2019; 9 2016; 9799 2021; 5 2017; 60 2015; 3 2014; 9057 2017; 28 2022; 95 2017; 27 2015; 53 2021; 502 2017; 22 2017; 65 2009 2013; 103 2020; 36 2014; 46 2013; 102 2020; 100 2020; 78 2020; 267 2019; 141 2012; 225 2017; 257 2018; 27 2016; 361 2011; 133 2016; 56 2015; 24 2016; 6 2017; 15 2004; 19 2019; 41 2021; 137 2020; 231 2020; 70 2017; 13 2013; 332 2021; 172 2008; 46 2016 2020; 68 2017; 142 2013 2018; 53 2010; 96 2014; 77 2017; 105 2019; 255 2020; 29 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 Boragno C (e_1_2_9_54_1) 2015 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 Chatterjee P (e_1_2_9_94_1) 2016 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 Zhao LC (e_1_2_9_8_1) 2021; 23 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 6 issue: 5 year: 2016 article-title: Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy publication-title: Adv Energy Mater – volume: 3 issue: 1 year: 2015 article-title: Fluid‐solid‐electric lock‐in of energy‐harvesting piezoelectric flags publication-title: Phys Rev Appl – volume: 255 year: 2019 article-title: Mechanical modulations for enhancing energy harvesting: principles, methods and applications publication-title: Appl Energy – volume: 23 start-page: 1131 issue: 10 year: 2012 end-page: 1141 article-title: Wake synergies enhance performance in aeroelastic vibration energy harvesting publication-title: J Intell Mater Syst Struct – volume: 46 start-page: 733 issue: 3 year: 2008 end-page: 743 article-title: Active control of nonlinear panel flutter using aeroelastic modes and piezoelectric actuators publication-title: AIAA J – volume: 133 issue: 1 year: 2011 article-title: Modeling and testing of a novel aeroelastic flutter energy harvester publication-title: J Vib Acoust – volume: 13 start-page: 3101 issue: 12 year: 2020 article-title: Enhancing performance of a piezoelectric energy harvester system for concurrent flutter and vortex‐induced vibration publication-title: Energies – volume: 67 start-page: 925 issue: 2 year: 2012 end-page: 939 article-title: Modeling and analysis of piezoaeroelastic energy harvesters publication-title: Nonlinear Dyn – volume: 225 start-page: 97 year: 2012 end-page: 102 article-title: Numerical investigation of flow‐induced vibration of a cantilever beam for a piezoelectric energy harvester publication-title: Appl Mech Mater – volume: 7493 year: 2009 – volume: 41 start-page: 9 issue: 1 year: 2019 article-title: A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis publication-title: J Braz Soc Mech Sci Eng – volume: 46 start-page: 174 year: 2014 end-page: 191 article-title: A review on flow energy harvesters based on flapping foils publication-title: J Fluids Struct – volume: 24 start-page: 846 issue: 7 year: 2013 end-page: 854 article-title: Electroaeroelastic analysis of airfoil‐based wind energy harvesting using piezoelectric transduction and electromagnetic induction publication-title: J Intell Mater Syst Struct – volume: 57 start-page: 407 year: 2014 end-page: 419 article-title: On the visualisation of flow structures downstream of fluttering piezoelectric energy harvesters in a tandem configuration publication-title: Exp Thermal Fluid Sci – volume: 100 start-page: 1963 issue: 3 year: 2020 end-page: 1983 article-title: Dynamics of the double‐beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping‐based vibration publication-title: Nonlin Dyn. – volume: 127 start-page: 162 year: 2018 end-page: 185 article-title: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement publication-title: Int J Eng Sci – volume: 74 start-page: 1 year: 2017 end-page: 18 article-title: A comprehensive review on vibration energy harvesting: modelling and realization publication-title: Renew Sustain Energy Rev – volume: 33 start-page: 476 year: 2017 end-page: 484 article-title: Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy publication-title: Nano Energy – volume: 22 start-page: 1093 issue: 2 year: 2017 end-page: 1103 article-title: Synergy of wind energy harvesting and synchronized switch harvesting interface circuit publication-title: IEEE/ASME Trans Mechatron – volume: 142 start-page: 321 year: 2017 end-page: 327 article-title: A study on the wind‐induced flutter energy harvester (WIFEH) integration into buildings publication-title: Energy Proc – volume: 137 year: 2021 article-title: Hybrid energy harvesting technology: from materials, structural design, system integration to applications publication-title: Renew Sustain Energy Rev – volume: 267 year: 2020 article-title: The state‐of‐the‐art review on energy harvesting from flow‐induced vibrations publication-title: Appl Energy – volume: 9 start-page: 4823 issue: 22 year: 2019 article-title: A flutter‐based electromagnetic wind energy harvester: theory and experiments publication-title: Appl Sci – volume: 29 start-page: 653 issue: 4 year: 2018 end-page: 668 article-title: Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time‐dependent boundary conditions in supersonic airflow publication-title: J Intell Mater Syst Struct – volume: 172 year: 2020 article-title: Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink publication-title: Int J Mech Sci – volume: 9 start-page: 5543 year: 2019 article-title: Frequency and voltage response of a wind‐driven fluttering triboelectric nanogenerator publication-title: Sci Rep – volume: 326 start-page: 263 issue: 1 year: 2009 end-page: 276 article-title: Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter‐mill publication-title: J Sound Vib – volume: 68 start-page: 519 issue: 4 year: 2012 end-page: 530 article-title: Design of piezoaeroelastic energy harvesters publication-title: Nonlin Dyn – volume: 11 start-page: 868 issue: 11 year: 2000 end-page: 876 article-title: Aeroelastic control of smart composite plate with delaminations publication-title: J Intell Mater Syst Struct – volume: 71 start-page: 159 issue: 1 year: 2013 end-page: 173 article-title: An analytical and experimental investigation into limit‐cycle oscillations of an aeroelastic system publication-title: Nonlinear Dyn – volume: 25 start-page: 401 issue: 4 year: 2014 end-page: 416 article-title: Aeroelastic characteristics of linear and nonlinear piezo‐aeroelastic energy harvester publication-title: J Intell Mater Syst Struct – volume: 20 issue: 9 year: 2011 article-title: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment publication-title: Smart Mater Struct – volume: 8 start-page: 189 issue: 6 year: 2017 article-title: Parametric analysis and experimental verification of a hybrid vibration energy harvester combining piezoelectric and electromagnetic mechanisms publication-title: Micromachines – volume: 28 start-page: 163 issue: 2 year: 2017 end-page: 177 article-title: Energy harvesting for actuators and sensors using free‐floating flaps publication-title: J Intell Mater Syst Struct – volume: 95 year: 2022 article-title: A self‐regulation strategy for triboelectric nanogenerator and self‐powered wind‐speed sensor publication-title: Nano Energy – volume: 27 issue: 1 year: 2017 article-title: Aeroelastic flutter energy harvesters self‐polarized by triboelectric effects publication-title: Smart Mater Struct – volume: 5 start-page: 4929 issue: 1 year: 2014 article-title: Flutter‐driven triboelectrification for harvesting wind energy publication-title: Nat Commun – volume: 51 start-page: 279 year: 2013 end-page: 290 article-title: Downstream flow structures of a fluttering piezoelectric energy harvester publication-title: Exp Thermal Fluid Sci – year: 2016 – volume: 133 start-page: 33 year: 2014 end-page: 39 article-title: Broadband tristable energy harvester: modeling and experiment verification publication-title: Appl Energy – volume: 100 start-page: 112 year: 2016 end-page: 135 article-title: Aeroelastic energy harvesting: a review publication-title: Int J Eng Sci – volume: 67 start-page: 2 year: 2014 end-page: 28 article-title: A review of progress and challenges in flapping foil power generation publication-title: Prog Aerosp Sci – volume: 30 issue: 5 year: 2021 article-title: Influence of vehicle body vibration induced by road excitation on the performance of a vehicle‐mounted piezoelectric‐electromagnetic hybrid energy harvester publication-title: Smart Mater Struct – volume: 28 issue: 1 year: 2019 article-title: Nonlinear magnetic‐coupled flutter‐based aeroelastic energy harvester: modeling, simulation and experimental verification publication-title: Smart Mater Struct – volume: 211 start-page: 25 issue: 1 year: 2020 end-page: 44 article-title: A review on applications of piezoelectric materials in aerospace industry publication-title: Integr Ferroelectr – volume: 11 start-page: 933 issue: 10 year: 2020 article-title: Performance evaluation of a piezoelectric energy harvester based on flag‐flutter publication-title: Micromachines – volume: 27 issue: 8 year: 2018 article-title: Aeroelastic‐photovoltaic ribbons for integrated wind and solar energy harvesting publication-title: Smart Mater Struct – volume: 141 issue: 3 year: 2019 article-title: Micropower generation using cross‐flow instabilities: a review of the literature and its implications publication-title: J Vibr Acoustics‐Trans ASME – volume: 68 year: 2020 article-title: Flow‐induced snap‐through triboelectric nanogenerator publication-title: Nano Energy – volume: 9431 year: 2015 – volume: 70 start-page: 390 year: 2017 end-page: 402 article-title: Energy harvesting from galloping of prisms: a wind tunnel experiment publication-title: J Fluids Struct – volume: 103 start-page: 033903 issue: 3 year: 2013 end-page: 033942 article-title: Performance enhancement of piezoelectric energy harvesters from wake galloping publication-title: Appl Phys Lett – volume: 9799 year: 2016 – volume: 56 start-page: 1351 year: 2016 end-page: 1371 article-title: A review on small scale wind turbines publication-title: Renew Sustain Energy Rev – volume: 86 start-page: 1599 issue: 3 year: 2016 end-page: 1611 article-title: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters publication-title: Nonlinear Dyn – volume: 53 start-page: 2807 issue: 11‐12 year: 2018 end-page: 2831 article-title: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter publication-title: Meccanica – year: 2013 – volume: 198 year: 2021 article-title: Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting publication-title: Int J Mech Sci – start-page: 339 end-page: 359 – volume: 23 year: 2021 article-title: Dynamically synergistic regulation mechanism for rotation energy harvesting publication-title: Mech Systems Signal Proc – volume: 23 issue: 7 year: 2014 article-title: Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions publication-title: Smart Mater Struct – volume: 25 start-page: 1991 issue: 14 year: 2019 end-page: 2007 article-title: The effects of structural and aerodynamic nonlinearities on the energy harvesting from airfoil stall‐induced oscillations publication-title: J Vib Control – volume: 65 start-page: 78 year: 2017 end-page: 89 article-title: Flutter suppression for highly flexible wings using passive and active piezoelectric effects publication-title: Aerospace Sci Technol – volume: 60 start-page: 203 year: 2017 end-page: 209 article-title: Stability analysis on an aeroelastic system for design of a flutter energy harvester publication-title: Aerospace Sci Technol – volume: 96 year: 2010 article-title: On the energy harvesting potential of piezoaeroelastic systems publication-title: Appl Phys Lett – volume: 19 start-page: 123 issue: 2 year: 2004 end-page: 140 article-title: Coupling of structure and wake oscillators in vortex‐induced vibrations publication-title: J Fluids Struct – volume: 199 start-page: 3474 year: 2017 end-page: 3479 article-title: FLuttering energy harvester for autonomous powering (FLEHAP): aeroelastic characterisation and preliminary performance evaluation publication-title: Procedia Eng – volume: 105 start-page: 530 year: 2017 end-page: 538 article-title: Fluttering conditions of an energy harvester for autonomous powering publication-title: Renew Energy – volume: 3 issue: 3 year: 2018 article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel publication-title: Adv Mater Technol. – start-page: 611 year: 2009 end-page: 619 – volume: 79 start-page: 297 year: 2018 end-page: 309 article-title: A study on adaptive vibration control and energy conversion of highly flexible multifunctional wings publication-title: Aerospace Sci Technol – volume: 211 start-page: 132 issue: 1 year: 2020 end-page: 151 article-title: Modeling and design of a piezoelectric nonlinear aeroelastic energy harvester publication-title: Integr Ferroelectr – volume: 24 issue: 3 year: 2015 article-title: Enhanced aeroelastic energy harvesting with a beam stiffener publication-title: Smart Mater Struct – volume: 53 start-page: 394 issue: 2 year: 2015 end-page: 404 article-title: Three‐degree‐of‐freedom hybrid piezoelectric‐inductive aeroelastic energy harvester exploiting a control surface publication-title: AIAA J – volume: 361 start-page: 355 year: 2016 end-page: 377 article-title: Fluttering energy harvesters in the wind: a review publication-title: J Sound Vib – volume: 172 start-page: 611 year: 2018 end-page: 618 article-title: Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications publication-title: Energy Convers Manage – volume: 86 start-page: 28 year: 2016 end-page: 62 article-title: Energy harvesting by means of flow‐induced vibrations on aerospace vehicles publication-title: Prog Aerosp Sci – volume: 15 start-page: 122 year: 2017 end-page: 129 article-title: An aeroelastic flutter based triboelectric nanogenerator as a self‐powered active wind speed sensor in harsh environment publication-title: Extreme Mech Lett – volume: 5 year: 2021 article-title: The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil publication-title: J Vib Control. – volume: 29 issue: 8 year: 2020 article-title: Performance enhancement for a magnetic‐coupled bi‐stable flutter‐based energy harvester publication-title: Smart Mater Struct – volume: 24 issue: 3 year: 2015 article-title: An electret‐based aeroelastic flutter energy harvester publication-title: Smart Mater Struct – volume: 102 issue: 24 year: 2013 article-title: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator publication-title: Appl Phys Lett – volume: 109 start-page: 033904 issue: 3 year: 2016 end-page: 033942 article-title: A broadband bi‐stable flow energy harvester based on the wake‐galloping phenomenon publication-title: Appl Phys Lett – volume: 70 year: 2020 article-title: Wind energy harvesting based on fluttering double‐flag type triboelectric nanogenerators publication-title: Nano Energy – volume: 172 start-page: 511 year: 2021 end-page: 563 article-title: Investigation of frequency‐up conversion effect on the performance improvement of stack‐based piezoelectric generators publication-title: Renew Energy – volume: 167 year: 2022 article-title: A theory for bistable vibration isolators publication-title: Mech Syst Signal Process – volume: 77 start-page: 967 issue: 3 year: 2014 end-page: 981 article-title: Piezoelectric energy harvesting from concurrent vortex‐induced vibrations and base excitations publication-title: Nonlin Dyn – volume: 9057 year: 2014 article-title: Energy harvesting for self‐powered aerostructure actuation publication-title: Active and Passive Smart Structures and Integrated Systems – volume: 17 start-page: 365 issue: 17 year: 1979 end-page: 374 article-title: Unsteady aerodynamic modeling for arbitrary motions publication-title: AIAA J – volume: 114 start-page: 243902 issue: 24 year: 2019 end-page: 243942 article-title: Scavenging wind energy by a dynamic‐stable flutter energy harvester with rectangular wing publication-title: Appl Phys Lett – volume: 231 year: 2020 article-title: Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode publication-title: Microelectron Eng – volume: 78 year: 2020 article-title: A novel humidity resisting and wind direction adapting flag‐type triboelectric nanogenerator for wind energy harvesting and speed sensing publication-title: Nano Energy – volume: 257 start-page: 198 year: 2017 end-page: 207 article-title: A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique publication-title: Sens Actuators, A – volume: 82 start-page: 492 year: 2018 end-page: 504 article-title: On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow publication-title: J Fluids Struct – volume: 8 start-page: 031317 issue: 3 year: 2021 end-page: 031342 article-title: Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications publication-title: Appl Phys Rev – volume: 13 start-page: 21 year: 2017 end-page: 24 – volume: 199 start-page: 3428 year: 2017 end-page: 3433 article-title: FLuttering energy harvester for autonomous powering (FLEHAP): a synergy between EMc and dielectric elastomers generators publication-title: Procedia Eng – volume: 102 start-page: 044101 issue: 4 year: 2013 end-page: 044142 article-title: Hybrid piezoelectric‐inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling publication-title: Appl Phys Lett – volume: 239 start-page: 735 year: 2019 end-page: 746 article-title: A water‐proof magnetically coupled piezoelectric‐electromagnetic hybrid wind energy harvester publication-title: Appl Energy – volume: 502 year: 2021 article-title: A method for investigating aerodynamic load models of piezoaeroelastic energy harvester publication-title: J Sound Vib – volume: 332 start-page: 247 issue: 20 year: 2013 end-page: 257 article-title: Energy harvesting under combined aerodynamic and base excitations publication-title: J Sound Vib – volume: 8688 year: 2013 – volume: 74 start-page: 111 year: 2017 end-page: 129 article-title: Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: modeling and numerical analysis publication-title: J Fluids Struct – volume: 36 start-page: 592 issue: 3 year: 2020 end-page: 605 article-title: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester publication-title: Acta Mech Sin – ident: e_1_2_9_98_1 doi: 10.3390/en13123101 – ident: e_1_2_9_82_1 doi: 10.1007/s11071-016-2979-7 – ident: e_1_2_9_6_1 doi: 10.1016/j.rser.2015.12.027 – ident: e_1_2_9_52_1 doi: 10.1117/12.2009818 – ident: e_1_2_9_65_1 doi: 10.1016/j.nanoen.2020.105279 – ident: e_1_2_9_87_1 doi: 10.3390/mi8060189 – ident: e_1_2_9_107_1 doi: 10.1016/j.ijmecsci.2020.105417 – ident: e_1_2_9_17_1 doi: 10.1002/aenm.201501799 – ident: e_1_2_9_74_1 doi: 10.1016/j.jfluidstructs.2017.06.009 – ident: e_1_2_9_16_1 – ident: e_1_2_9_76_1 doi: 10.1088/0964-1726/24/3/032001 – ident: e_1_2_9_36_1 doi: 10.1007/s11071-011-0035-1 – ident: e_1_2_9_93_1 doi: 10.1016/j.enconman.2018.07.044 – ident: e_1_2_9_85_1 doi: 10.1088/1361-665X/ab9238 – ident: e_1_2_9_86_1 doi: 10.1063/1.5100598 – ident: e_1_2_9_31_1 doi: 10.1016/j.eml.2017.07.005 – ident: e_1_2_9_13_1 doi: 10.1007/s11071-020-05633-3 – ident: e_1_2_9_29_1 doi: 10.1080/10584587.2020.1803672 – ident: e_1_2_9_43_1 doi: 10.1007/s40430-018-1509-6 – ident: e_1_2_9_53_1 doi: 10.1016/j.ast.2016.11.011 – ident: e_1_2_9_44_1 doi: 10.1007/s11071-011-0233-x – ident: e_1_2_9_101_1 doi: 10.1177/1045389X17721027 – ident: e_1_2_9_20_1 doi: 10.1016/j.rser.2020.110473 – ident: e_1_2_9_12_1 doi: 10.1007/s10409-020-00928-5 – ident: e_1_2_9_62_1 doi: 10.1038/s41598-019-42128-7 – ident: e_1_2_9_88_1 doi: 10.1016/j.sna.2017.02.026 – ident: e_1_2_9_80_1 doi: 10.1177/1077546319844383 – start-page: 94310G volume-title: Active and Passive Smart Structures and Integrated Systems year: 2015 ident: e_1_2_9_54_1 – ident: e_1_2_9_37_1 doi: 10.1088/1361-665X/aaede3 – ident: e_1_2_9_83_1 doi: 10.1016/j.ijengsci.2018.02.003 – ident: e_1_2_9_9_1 doi: 10.1016/j.energy.2021.121770 – ident: e_1_2_9_71_1 doi: 10.1109/TMECH.2016.2630732 – ident: e_1_2_9_28_1 doi: 10.1016/j.paerosci.2016.08.001 – ident: e_1_2_9_61_1 doi: 10.1115/SMASIS2009-1276 – ident: e_1_2_9_47_1 doi: 10.1117/12.2046408 – ident: e_1_2_9_77_1 doi: 10.1016/j.ymssp.2021.108507 – ident: e_1_2_9_73_1 doi: 10.1016/j.nanoen.2019.104379 – ident: e_1_2_9_32_1 doi: 10.1117/12.845784 – ident: e_1_2_9_26_1 doi: 10.1016/j.jsv.2015.09.043 – ident: e_1_2_9_78_1 doi: 10.1177/1045389X13498312 – start-page: 979914 volume-title: Active and Passive Smart Structures and Integrated Systems year: 2016 ident: e_1_2_9_94_1 – ident: e_1_2_9_35_1 doi: 10.2514/1.J053108 – ident: e_1_2_9_24_1 doi: 10.1016/j.jfluidstructs.2014.01.002 – ident: e_1_2_9_90_1 doi: 10.1117/12.2009825 – ident: e_1_2_9_63_1 doi: 10.1016/j.jsv.2009.04.041 – volume: 23 year: 2021 ident: e_1_2_9_8_1 article-title: Dynamically synergistic regulation mechanism for rotation energy harvesting publication-title: Mech Systems Signal Proc – ident: e_1_2_9_81_1 doi: 10.1016/j.apenergy.2014.07.077 – ident: e_1_2_9_14_1 doi: 10.1063/1.4959181 – ident: e_1_2_9_56_1 doi: 10.1109/NGCAS.2017.26 – ident: e_1_2_9_58_1 doi: 10.1115/SMASIS2012-7951 – ident: e_1_2_9_25_1 doi: 10.1016/j.paerosci.2013.11.001 – ident: e_1_2_9_3_1 doi: 10.1016/j.apenergy.2019.02.006 – ident: e_1_2_9_91_1 doi: 10.1063/1.4789433 – ident: e_1_2_9_68_1 doi: 10.1088/1742-6596/773/1/012021 – ident: e_1_2_9_22_1 doi: 10.1016/j.jfluidstructs.2017.02.006 – ident: e_1_2_9_97_1 doi: 10.1177/1045389X12443599 – ident: e_1_2_9_33_1 doi: 10.1063/1.3427405 – ident: e_1_2_9_102_1 doi: 10.2514/1.33803 – ident: e_1_2_9_21_1 doi: 10.1115/1.4042521 – ident: e_1_2_9_42_1 doi: 10.2514/3.7348 – ident: e_1_2_9_64_1 doi: 10.1038/ncomms5929 – ident: e_1_2_9_46_1 doi: 10.1063/1.4811408 – ident: e_1_2_9_23_1 doi: 10.1103/PhysRevApplied.3.014009 – ident: e_1_2_9_70_1 doi: 10.4028/www.scientific.net/AMM.225.97 – ident: e_1_2_9_108_1 doi: 10.1177/1077546321993585 – ident: e_1_2_9_15_1 doi: 10.1063/1.4816075 – ident: e_1_2_9_106_1 doi: 10.1016/j.ast.2018.05.056 – ident: e_1_2_9_69_1 doi: 10.3390/mi11100933 – ident: e_1_2_9_48_1 doi: 10.1177/1045389X16645954 – ident: e_1_2_9_100_1 doi: 10.1016/j.egypro.2017.12.051 – ident: e_1_2_9_19_1 doi: 10.1016/j.nanoen.2017.02.005 – ident: e_1_2_9_79_1 doi: 10.1088/0964-1726/20/9/094007 – ident: e_1_2_9_84_1 doi: 10.1016/j.apenergy.2019.113871 – ident: e_1_2_9_105_1 doi: 10.1016/j.ast.2017.02.013 – ident: e_1_2_9_30_1 doi: 10.1088/1361-665X/aa8b1e – ident: e_1_2_9_41_1 – ident: e_1_2_9_72_1 doi: 10.1016/j.renene.2021.03.064 – ident: e_1_2_9_4_1 doi: 10.1016/j.ijmecsci.2021.106363 – ident: e_1_2_9_75_1 doi: 10.1016/j.jfluidstructs.2018.07.020 – ident: e_1_2_9_7_1 doi: 10.1016/j.ijengsci.2015.10.006 – ident: e_1_2_9_57_1 doi: 10.1016/j.renene.2016.12.067 – ident: e_1_2_9_104_1 doi: 10.1063/5.0051432 – ident: e_1_2_9_51_1 doi: 10.1016/j.expthermflusci.2014.05.017 – ident: e_1_2_9_34_1 doi: 10.1177/1045389X12461073 – ident: e_1_2_9_2_1 doi: 10.1016/j.rser.2017.01.073 – ident: e_1_2_9_89_1 doi: 10.1088/0964-1726/23/7/075024 – ident: e_1_2_9_10_1 doi: 10.1007/s11071-014-1355-8 – ident: e_1_2_9_66_1 doi: 10.1088/0964-1726/24/3/035004 – ident: e_1_2_9_59_1 doi: 10.1016/j.mee.2020.111333 – ident: e_1_2_9_95_1 doi: 10.1088/1361-665X/abf41f – ident: e_1_2_9_45_1 doi: 10.1016/j.jsv.2013.04.009 – ident: e_1_2_9_92_1 doi: 10.1088/1361-665X/aacbbb – ident: e_1_2_9_99_1 doi: 10.1016/j.nanoen.2020.104526 – ident: e_1_2_9_55_1 doi: 10.1016/j.expthermflusci.2013.08.010 – ident: e_1_2_9_67_1 doi: 10.3390/app9224823 – ident: e_1_2_9_27_1 doi: 10.1016/j.apenergy.2020.114902 – ident: e_1_2_9_5_1 doi: 10.1016/j.nanoen.2022.106990 – ident: e_1_2_9_96_1 doi: 10.1016/j.proeng.2017.09.489 – ident: e_1_2_9_38_1 doi: 10.1016/j.jsv.2021.116084 – ident: e_1_2_9_11_1 doi: 10.1016/j.jfluidstructs.2003.12.004 – ident: e_1_2_9_40_1 doi: 10.1115/1.4002788 – ident: e_1_2_9_49_1 doi: 10.1080/10584587.2020.1803681 – ident: e_1_2_9_50_1 doi: 10.1007/s11012-018-0875-6 – ident: e_1_2_9_18_1 doi: 10.1002/admt.201700317 – ident: e_1_2_9_103_1 doi: 10.1106/P1K4-8445-XJFE-XXH3 – ident: e_1_2_9_39_1 doi: 10.1007/s11071-012-0648-z – ident: e_1_2_9_60_1 doi: 10.1016/j.proeng.2017.09.456 |
SSID | ssj0002811365 |
Score | 2.4362085 |
SecondaryResourceType | review_article |
Snippet | Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many... Abstract Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 82 |
SubjectTerms | Aeroelastic stability Aeronautics Alternative energy dynamics Eigenvalues Energy harvesting Flat plates Flexible bodies Flutter Hybrid structures Limit cycle oscillations performance enhancement Structural stability Vibration Vortices wind energy harvesting Wind power working principle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ND) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3SlS7EJ1arBHSjMDaTZCaTpU-KoBstdBfyVKROpa249RP8Rr_EJDOtI4hu3A1DFpdzJ3Nuwr3nAHBAMCG5IirRlMmEWl4kioVLHEUc8zuTGB27fG_yXp9eDbJBw-or9IRV8sAVcF3ONSqkJLnVylO_4ZpZT3EuU0g7W031Io4ah6nHeGUUvEqyuR4p7j5NDD5OMYq-bl8MFIX6v1WXzRo1kszlCliuq0N4UkW1ChZsuQaWGpqB64D7Qs8TBYyNVf43BUcldMNoN_3x9h5IycBXf9CGNk71wQc5jkoa5f0G6F9e3J31ktr_wAMXlCS5IloGMR7MPG2zwno-05wybqnJsWEZdYpJyVFmg8GDxdpST9ipkcZ5qDOyCVrlqLRbAEoiUaaUcikjVGJe5D4VThqbapflVrXB4QwToWtx8OBRMRSVrDEWAT8R8WuD_fna50oS48dVpwHa-YogYx1f-OSKOrnir-S2QWeWGFHvrYkgyBelmOcMt8FRTNYvYYjr23Mcn7b_I6AdsIjD_ENsQuuA1nT8Ynd9VTJVe_ED_ASWIeAh priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsNAFB20bnQhPjFaJaAbhdhkJslkVuKrFkE3WuhumKcualrbils_wW_0S7wzTR-CdBfCEMKdmXtObu6cg9AJwYTkkshIpVREqWFFJKkr4khiKexMopXv8n3MW-30vpN1qoLbsGqrnOREn6h1T7kaeYPEQEUwyym-6L9HzjXK_V2tLDSW0UoCSOPWedG8m9ZYcOEcS1wXI6aQD4DssKlCKW68DTU-T3Dsnd5mmOSl-__wzXnW6mGnuYHWK74YXo4neBMtmXILrc2pCG4jBtQPoCP0rVaQuMJeGdquN6D--fp2MKXDT_j0Do0_5xe-ioHX1ihfdlC7eft83YoqRwQIpdOWZJIo4eR5MAUgp4UBhFMspcykOseaZqmVVAgWZ8ZZPhisTAoQnmihLQQ_I7uoVvZKs4dCQUScSSltQkkqMCtymBwrtEmUzXIjA3Q6iQlXlVy4c63o8rHQMeYuftzHL0DH07H9sUjGv6OuXGinI5ywtb_RG7zwap9wxlRcCEFyoyQwPc0UNcBobCZjZU2SBKg-mRhe7bYhn62NAJ35yVrwGvzh6Qb7q_3FzzpAq9iddfANZ3VUGw0-zCEwkJE88svsF4XG2Lc priority: 102 providerName: ProQuest |
Title | Recent progress on flutter‐based wind energy harvesting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12035 https://www.proquest.com/docview/3092329672 https://doaj.org/article/99c08aa36ecb423d9c7e910f5b0cfe11 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsRAEC1cLnoQVxyXIaAXhdGku5NOgxe3UQRFXMBb0-t40IzMKF79BL_RL7G6JzMqiOAlhFCBUJXq97qpegWwSQmlhaa6ZRhXLeZE2dI8HOJo6jlmJrUmVvleFKe37OwuvxuDvWEvzEAfYnTgFjIjrtchwZXu736Jhj72LdnJSErzcZgMvbVhcANhl6MTFlKGeSWhhpFwXA2yWMpT65OS3a_XfyBSFO7_wTa_c9YIOu1ZmKnZYrI_CO8cjLlqHqa_aQgugEDih8CRxEIrXLaSbpX4hzh--uPtPYCUTV5x45242OWX3KteVNaoOotw2z6-OTxt1fMQ0JFBWVJoalQQ5yEcYZyXDvHNCMaFY7YglufMa66USHMXBj44YhxDAM-ssh5dn9MlmKi6lVuGRFGV5lprn3HKFBFlgaHxyrrM-LxwugFbQ59IU4uFh5kVD3Igc0xk8J-M_mvAxsj2aSCR8avVQXDtyCLIWscH3V5H1lkihTBpqRQtnNHI86ww3CGf8blOjXdZ1oC1YWBknWt9SVMkqUQUnDRgOwbrj8-Q59dHJN6t_Md4FaZI6HuIxWdrMPHce3HryEaedTP-dHgt2ydNmDw4vri8asad_SdtkNy5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V2wNwQPyKhQKRgANIoYntxPEBIUpbbWm7QtBKvbn-LYeSLbtFFTcegSfhoXgSZrzJtkiot96iyIqc8XjmizPzfQDPOeO8ttzmTkiTi6Ca3Eo6xLE8StyZ3LtU5TuuR_viw0F1sAS_-14YKqvsY2IK1H7i6Ix8lRcIRZiqJXt78i0n1Sj6u9pLaMzdYjv8OMNPttmbrXVc3xeMbW7svR_lnaoATof4GZXlzhDFDZOYDGUTMEs4JaQKwtfMy0pEK41RRRVINiEwFwSmwdIbH_EFSCUCQ_6yoI7WASyvbYw_flqc6rCGNFKobpJJjEAIr9SCE5Wtfp159rpkRdKWO8-CSSzgH4R7ESenRLd5C252CDV7N3ep27AU2jtw4wJv4V1QCDYxWWWpuAtDZTZps3icJK___PxFidFnZ_ixn4XUWZh9MdPE5tEe3YP9K7HWfRi0kzY8gMxwU1TW2lhKLgxTTY3uEI0PpYtVHewQXvY20a4jKCedjGM9p1Zmmuynk_2G8Gwx9mROy_HfUWtk2sUIotJONybTI93tTK2UKxpjeB2cRWzplZMBMVSsbOFiKMshrPQLo7v9PdPn3jiEV2mxLpmG3v28ztLVw8uf9RSujfZ2d_TO1nj7EVxn1GmRyt1WYHA6_R4eI_45tU86p8vg8Kr9_C_tPhcp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfGJ9FvSisG6bpE0DXnwtvhF0YW8hz_WwdmVVvPoT_I3-EpNsd3VBBG-lTKHMZPJ9TWe-AdjBCONcYllThIoaMayoSeoPcSS21GUm1ipU-d7kZ01y0cpaY3Aw6IXp60MMD9x8ZoT92if4k7b1b9HQx2eN9lOU4GwcJv3fPp-WiNwOT1hQ4eeV-BpGRN1ukIZSnkqfFNW_Hx9BpCDcP8I2f3LWADqNOZit2GJ82A_vPIyZcgFmfmgILgJzxM8BRxwKrdy2FXfL2HbC-OnP9w8PUjp-cx_esQldfvGD6AVljbK9BM3G6f3xWa2ah-Ac6ZUlmcRKeHEeRB2M08I4fFOMUGaIzpGmGbGSCsGSzPiBDwYpQxyAp1po61yf4WWYKLulWYFYYJFkUkqbUkwEYkXuQmOFNqmyWW5kBLsDn3BViYX7mRUd3pc5Rtz7jwf_RbA9tH3qS2T8anXkXTu08LLW4Ua31-ZVlnDGVFIIgXOjpON5milqHJ-xmUyUNWkawfogMLzKtWeOE0dSEcspimAvBOuP1-DXdycoXK3-x3gLpm5PGvzq_OZyDaaRb4EIdWjrMPHSezUbjpi8yM2w_r4A5_vb4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+flutter%E2%80%90based+wind+energy+harvesting&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Li%2C+Zhiyuan&rft.au=Zhou%2C+Shengxi&rft.au=Yang%2C+Zhichun&rft.date=2022-03-01&rft.issn=2767-1402&rft.eissn=2767-1402&rft.volume=2&rft.issue=1&rft.spage=82&rft.epage=98&rft_id=info:doi/10.1002%2Fmsd2.12035&rft.externalDBID=10.1002%252Fmsd2.12035&rft.externalDocID=MSD212035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon |