Recent progress on flutter‐based wind energy harvesting

Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind ene...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical system dynamics Vol. 2; no. 1; pp. 82 - 98
Main Authors Li, Zhiyuan, Zhou, Shengxi, Yang, Zhichun
Format Journal Article
LanguageEnglish
Published Nanjing John Wiley & Sons, Inc 01.03.2022
Wiley
Subjects
Online AccessGet full text
ISSN2767-1402
2767-1399
2767-1402
DOI10.1002/msd2.12035

Cover

More Information
Summary:Wind energy harvesting technology can convert wind energy into electric energy to supply power for microelectronic devices. It has great potential in many specific applications and environments, such as remote areas, sea surfaces, mountains, and so on. Over the past few years, flutter‐based wind energy harvesting, which generates electric energy based on the limit cycle oscillation created by structural aeroelastic instability, has received increasing attention, and as a consequence, different energy harvesting structures, theories, and methods have been proposed. In this paper, three types of flutter‐based energy harvesters (FEHs) including airfoil‐based, flat plate‐based, and flexible body‐based FEHs are reviewed, and related concepts and theoretical models are introduced. The recent progress in FEH performance enhancement methods is classified into structural improvement and optimization, the introduction of nonlinearity, and hybrid structures and mechanisms. Finally, the main FEH challenges are summarized, and future research directions are discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2767-1402
2767-1399
2767-1402
DOI:10.1002/msd2.12035