Axonal transport in neurological disease

The axonal transport systems have a wide variety of primary roles and secondary responses in neurological disease processes. Recent advances in understanding these roles have built on the increasingly detailed insights into the cell biology of the axon and its supporting cells. Fast transport is a m...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 23; no. 1; p. 3
Main Authors Griffin, J W, Watson, D F
Format Journal Article
LanguageEnglish
Published United States 01.01.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The axonal transport systems have a wide variety of primary roles and secondary responses in neurological disease processes. Recent advances in understanding these roles have built on the increasingly detailed insights into the cell biology of the axon and its supporting cells. Fast transport is a microtubule-based system of bidirectional movement of membranous organelles; the mechanism of translocation of these organelles involves novel proteins, including the recently described protein of fast anterograde transport, kinesin. Slow transport conveys the major cytoskeletal elements, microtubules, and neurofilaments. Several types of structural changes in diseased nerve fibers are understood in terms of underlying transport abnormalities. Altered slow transport of neurofilaments produces changes in axonal caliber (swelling or atrophy) and is involved in some types of perikaryal neurofibrillary abnormality. Secondary changes in slow axonal transport--for example, the reordered synthesis and delivery of cytoskeletal proteins after axotomy--also can produce changes in axonal caliber. Secondary demyelination can be a prominent late consequence of a sustained alteration of neurofilament transport. Impaired fast transport is found in experimental models of distal axonal degeneration (dying back). Retrograde axonal transport provides access to the central nervous system for agents such as polio virus and tetanus toxin, as well as access for known and hypothetical trophic factors. Correlative studies of axonal transport, axonal morphometry, cytoskeletal ultrastructure, and molecular biology of cytoskeletal proteins are providing extremely detailed reconstructions of the pathogenesis of experimental models of neurological disorders. A major challenge lies in the extension of these approaches to clinical studies.
ISSN:0364-5134
DOI:10.1002/ana.410230103