Orientation dependence of the fracture behavior of graphene

Graphene has unique mechanical properties in that it is simultaneously very strong and stretchy, which severely hampers the prediction of its orientation-dependent fracture behavior based on conventional theories used for common brittle or ductile materials. For the first time, by exploring the enti...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 66; pp. 619 - 628
Main Authors Jhon, Young I., Jhon, Young Min, Yeom, Geun Y., Jhon, Myung S.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene has unique mechanical properties in that it is simultaneously very strong and stretchy, which severely hampers the prediction of its orientation-dependent fracture behavior based on conventional theories used for common brittle or ductile materials. For the first time, by exploring the entire range of available tensile orientations, this study reveals the unique anisotropic fracture response of graphene using molecular dynamics simulations. We found that, as the uniaxial tensile direction rotates from armchair (0°) to zigzag orientation (30°), both the tensile strength and strain remain almost constant up to an orientation angle of ∼12°, then they rapidly increase (exponential growth), resulting in a remarkable degradation of the tensile strength compared to brittle fracture counterpart (inverse-sinusoidal growth). This typical fracture pattern holds for 100–700K. We propose a model that can explain its physical origin in good agreement with the simulation results. We also found that the elastic behavior of graphene is quasi-isotropic for all tensile orientations, in contrast to its anisotropic fracture behavior. Using indentation simulations of graphene, we showed that the anisotropic/isotropic features of fracture/elasticity are also well-preserved in the two-dimensional tensile systems but its fracture anisotropicity is greatly attenuated due to the inherent sixfold symmetry of graphene.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2013.09.051