Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi

Sustainable intensification of smallholder farms in Africa is highly dependent on enhancing biological nitrogen fixation (BNF). Legume diversification of maize-based systems is a core example of sustainable intensification, with the food security of millions of farm families at stake. This study hig...

Full description

Saved in:
Bibliographic Details
Published inRenewable agriculture and food systems Vol. 28; no. 3; pp. 234 - 244
Main Authors Mhango, Wezi G., Snapp, Sieglinde S., Phiri, George Y.K.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2013
CAMBRIDGE UNIVERSITY PRESS
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sustainable intensification of smallholder farms in Africa is highly dependent on enhancing biological nitrogen fixation (BNF). Legume diversification of maize-based systems is a core example of sustainable intensification, with the food security of millions of farm families at stake. This study highlights the constraints and opportunities associated with the adoption of legumes by smallholder farmers in southern Africa. A two-part survey of households and farm fields (n=88) was conducted in the Ekwendeni watershed of northern Malawi. Participatory research and education activities have been underway for over a decade in this region, resulting in expanded uptake of a range of legume species as intercrops and in rotation with the staple maize crop. Farmer adoption has occurred to a varying extent for soybean (Glycine max), pigeon pea (Cajanus cajan), velvet bean (Mucuna pruriens) and fish bean (Tephrosia vogelii). Farmers, working with the project valued pigeon pea and other legumes for soil fertility purposes to a greater extent than farmers not working with the project. Legumes were valued for a wide range of purposes beyond soil cover and fertility enhancement, notably for infant nutrition (at least for soybean), insect control, and vegetable and grain production for both market and home consumption. Literature values for BNF in tropical legumes range up to 170 kg N ha−1 for grain and 300 kg N ha−1 for green manure species; however, our field interviews illustrated the extent of constraints imposed by soil properties on smallholder fields in Malawi. The key edaphic constraints observed were very deficient to moderate phosphorus levels (range 4–142, average 33 mg kg−1), and moderately acid soils (range pH 5.1–7.9, average 6.2). The per farm hectarage devoted to legume production relative to maize production was also low (0.15 versus 0.35 ha), a surprising find in an area with demonstrated interest in novel legume species. Further, farmers showed a strong preference for legumes that produced edible grain, regardless of the associated nutrient removal in the harvested grain, and did not sow large areas to legume crops. These farm-level decisions act as constraints to BNF inputs in maize-based smallholder cropping systems. Overall, we found that legume productivity could be enhanced. We documented the value of policies and educational efforts that support farmers gaining access to high-quality seeds, amendments for phosphorus-deficient soils, and promotion of multipurpose legumes that build soils through leafy residues and roots, as well as providing grain for food security and sales.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1742-1705
1742-1713
DOI:10.1017/S1742170512000178