ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION

We consider the existence, the growth, poles, zeros, fixed points and the Borel exceptional value of solutions for the following difference equations relating to Gamma function y(z + 1) -y(z) = R(z) and y(z + 1) = P (z)y(z).

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 31; no. 4; pp. 1281 - 1294
Main Authors Zongxuan, Chen, Zhibo, Huang, Ranran, Zhang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2011
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the existence, the growth, poles, zeros, fixed points and the Borel exceptional value of solutions for the following difference equations relating to Gamma function y(z + 1) -y(z) = R(z) and y(z + 1) = P (z)y(z).
Bibliography:difference equation; meromorphic function; Borel exceptional value
42-1227/O
We consider the existence, the growth, poles, zeros, fixed points and the Borel exceptional value of solutions for the following difference equations relating to Gamma function y(z + 1) -y(z) = R(z) and y(z + 1) = P (z)y(z).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(11)60315-9