Topology Optimization Accelerated by Deep Learning

The computational cost of topology optimization based on the stochastic algorithm is shown to be greatly reduced by deep learning. In the learning phase, the cross-sectional image of an interior permanent magnet motor, represented in RGB, is used to train a convolutional neural network (CNN) to infe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 55; no. 6; pp. 1 - 5
Main Authors Sasaki, Hidenori, Igarashi, Hajime
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The computational cost of topology optimization based on the stochastic algorithm is shown to be greatly reduced by deep learning. In the learning phase, the cross-sectional image of an interior permanent magnet motor, represented in RGB, is used to train a convolutional neural network (CNN) to infer the torque properties. In the optimization phase, all the individuals are approximately evaluated by the trained CNN, while finite element analysis for accurate evaluation is performed only for a limited number of individuals. It is numerically shown that the computational cost for the topology optimization can be reduced without the loss of optimization quality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2019.2901906