Topology Optimization Accelerated by Deep Learning
The computational cost of topology optimization based on the stochastic algorithm is shown to be greatly reduced by deep learning. In the learning phase, the cross-sectional image of an interior permanent magnet motor, represented in RGB, is used to train a convolutional neural network (CNN) to infe...
Saved in:
Published in | IEEE transactions on magnetics Vol. 55; no. 6; pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The computational cost of topology optimization based on the stochastic algorithm is shown to be greatly reduced by deep learning. In the learning phase, the cross-sectional image of an interior permanent magnet motor, represented in RGB, is used to train a convolutional neural network (CNN) to infer the torque properties. In the optimization phase, all the individuals are approximately evaluated by the trained CNN, while finite element analysis for accurate evaluation is performed only for a limited number of individuals. It is numerically shown that the computational cost for the topology optimization can be reduced without the loss of optimization quality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2019.2901906 |