Nuclear Quantum Effects Made Accessible: Local Density Fitting in Multicomponent Methods

The simulation of nuclear quantum effects (NQEs) is crucial for an accurate description of systems and processes involving light nuclei, such as hydrogen atoms. Within the last years, the importance of those effects has been highlighted for a vast range of systems with tremendous implications in che...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 19; no. 22; pp. 8223 - 8233
Main Authors Hasecke, Lukas, Mata, Ricardo A.
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 28.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The simulation of nuclear quantum effects (NQEs) is crucial for an accurate description of systems and processes involving light nuclei, such as hydrogen atoms. Within the last years, the importance of those effects has been highlighted for a vast range of systems with tremendous implications in chemistry, biology, physics, and materials sciences. However, while electronic structure theory methods have become routine tools for quantum chemical investigations, there is still a lack of approaches to address NQEs that are computationally accessible and straightforward to use. To address this, we present the first combination of the nuclear-electronic orbital Hartree–Fock approach with both local and density fitting approximations (LDF-NEO-HF). This results in a low-order scaling approach that enables the inclusion of NQEs for large systems within a fraction of a day and for small to medium size systems in minutes. Moreover, we demonstrate the qualitative accuracy and robustness of our approach to retrieve NQEs for three real-use cases motivated by chemical, biological, and materials science applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.3c01055