Geometrically incompatible confinement of solids

The complex morphologies exhibited by spatially confined thin objects have long challenged human efforts to understand and manipulate them, from the representation of patterns in draped fabric in Renaissance art to current-day efforts to engineer flexible sensors that conform to the human body. We i...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 5; pp. 1483 - 1488
Main Authors Davidovitch, Benny, Sun, Yiwei, Grason, Gregory M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.01.2019
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The complex morphologies exhibited by spatially confined thin objects have long challenged human efforts to understand and manipulate them, from the representation of patterns in draped fabric in Renaissance art to current-day efforts to engineer flexible sensors that conform to the human body. We introduce a theoretical principle, broadly generalizing Euler’s elastica—a core concept of continuum mechanics that invokes the energetic preference of bending over straining a thin solid object and that has been widely applied to classical and modern studies of beams and rods. We define a class of geometrically incompatible confinement problems, whereby the topography imposed on a thin solid body is incompatible with its intrinsic (“target”) metric and, as a consequence of Gauss’ Theorema Egregium, induces strain. By focusing on a prototypical example of a sheet attached to a spherical substrate, numerical simulations and analytical study demonstrate that the mechanics is governed by a principle, which we call the “Gauss–Euler elastica.” This emergent rule states that—despite the unavoidable strain in such an incompatible confinement—the ratio between the energies stored in straining and bending the solid may be arbitrarily small. The Gauss–Euler elastica underlies a theoretical framework that greatly simplifies the daunting task of solving the highly nonlinear equations that describe thin solids at mechanical equilibrium. This development thus opens possibilities for attacking a broad class of phenomena governed by the coupling of geometry and mechanics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Tom C. Lubensky, University of Pennsylvania, Philadelphia, PA, and approved November 26, 2018 (received for review September 10, 2018)
Author contributions: B.D. and G.M.G. designed research; B.D., Y.S., and G.M.G. performed research; and B.D. and G.M.G. wrote the paper.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1815507116