Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups

Poly-acrylamide hydrogels were modified by copolymerization with acrylic acid and used as growth medium for CaCO3 in a double-diffusion arrangement. The carboxylate functionalities in the gel network facilitate the nucleation of a multitude of small crystallites of vaterite and calcite, which are te...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 25; no. 2; pp. 277 - 282
Main Authors Grassmann, Olaf, Löbmann, Peer
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Poly-acrylamide hydrogels were modified by copolymerization with acrylic acid and used as growth medium for CaCO3 in a double-diffusion arrangement. The carboxylate functionalities in the gel network facilitate the nucleation of a multitude of small crystallites of vaterite and calcite, which are temporarily stabilized even while supersaturation is increasing within the hydrogel. After an extended induction period the rapid spherulitic growth of calcite crystals along their c-axis is observed yielding spheres with diameters exceeding 300 microm. In the center of those aggregates disordered, porous regions can be identified as starting point of this rapid crystallization. The results are compared to previous studies on native poly-acrylamide hydrogels and networks modified with -SO(3)H functional groups. The mineralization mechanism is significantly altered by specific interactions between the -COOH functionalized network and the evolving mineral phase.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0142-9612
DOI:10.1016/s0142-9612(03)00526-x