Narrow Sub-Fin Technique for Suppressing Parasitic-Channel Effect in Stacked Nanosheet Transistors
A new approach of narrowing sub-fin with little extra process cost for suppressing parasitic-channel-effect (PCE) on vertically-stacked horizontal gate-all-around (GAA) Si nanosheet field-effect-transistors (NS-FETs) is proposed. The proposed sub-fin design demonstrates systematical technical advant...
Saved in:
Published in | IEEE journal of the Electron Devices Society Vol. 10; pp. 35 - 39 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A new approach of narrowing sub-fin with little extra process cost for suppressing parasitic-channel-effect (PCE) on vertically-stacked horizontal gate-all-around (GAA) Si nanosheet field-effect-transistors (NS-FETs) is proposed. The proposed sub-fin design demonstrates systematical technical advantages by calibrated 3D TCAD simulation, including 70% reduction in sub-channel gate-induced drain leakage (GIDL) current, over 20% promotion for on-off current ratio (<inline-formula> <tex-math notation="LaTeX">\text{I}_{\mathrm{ on}}/\text{I}_{\mathrm{ off}} </tex-math></inline-formula>) as well as improvement in sub-threshold slope (SS). The revealed narrow sub-fin offers nearly 10% on-state current promotion and gate controllability improvement for the NS-FETs with relatively lower ground-plane-concentration. The narrow sub-fin technique provides a new approach for suppressing PCE in the NS-FETs and indicates a promising supplementary technology adopted for the optimization of NS-FET fabrication process in sub-3nm technology node. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2168-6734 2168-6734 |
DOI: | 10.1109/JEDS.2021.3130123 |