IGFBP-3 Inhibits the Proliferation of Neural Progenitor Cells

Insulin like growth factor-1 (IGF-1) plays an important role in the proliferation and differentiation of neural progenitor cells. The effects of IGF-1 can be regulated by insulin like growth factor binding protein-3 (IGFBP-3) which can either inhibit or stimulate the proliferation of cells depending...

Full description

Saved in:
Bibliographic Details
Published inNeurochemical research Vol. 36; no. 3; pp. 406 - 411
Main Authors Kalluri, Haviryaji S. G., Dempsey, Robert J.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2011
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Insulin like growth factor-1 (IGF-1) plays an important role in the proliferation and differentiation of neural progenitor cells. The effects of IGF-1 can be regulated by insulin like growth factor binding protein-3 (IGFBP-3) which can either inhibit or stimulate the proliferation of cells depending on the expression of proteases that can release IGF-1 from IGF1-IGFBP3 complex. Although IGF-1 is essential for the development of brain, both IGFBP-3 and IGF-1 are elevated in the brains of children younger than 6 months of age. Likewise, IGFBP-3 is also upregulated following cerebral ischemia and hypoxia. However, the role of IGFBP-3 in neurogenesis is not clear. Using an in vitro culture system of rat neural progenitor cells, we demonstrate that IGFBP-3 specifically regulates the IGF-1 mediated neural progenitor cell proliferation via down regulation of phopho-Akt, and cyclin D1. In addition, IGFBP-3 also decreased the content of nestin in the neural progenitor cells indicating its potential role in neurogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-010-0349-2