Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine

In this study, C,N,S-doped ZrO2 and a series of Eu doped C,N,S-ZrO2 photocatalysts were synthesized by a coprecipitation method using thiourea as the source of C, N and S and Eu(NO3)·6H2O as source of Eu. The materials were characterized by X-ray dif-fraction (XRD), Raman spectroscopy, Fourier trans...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 33; no. 5; pp. 498 - 506
Main Authors Agorku, E.S., Kuvarega, A.T., Mamba, B.B., Pandey, A.C., Mishra, A.K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, C,N,S-doped ZrO2 and a series of Eu doped C,N,S-ZrO2 photocatalysts were synthesized by a coprecipitation method using thiourea as the source of C, N and S and Eu(NO3)·6H2O as source of Eu. The materials were characterized by X-ray dif-fraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Indigo carmine (IC) was chosen as a model for organic pollutants and used to evaluate the photocatalytic performance of the photo-catalysts under simulated solar light. Commercial ZrO2 was used as a reference material. XRD and Raman results indicated the for-mation of both tetragonal and monoclinic phase ZrO2 with particle size ranging from 8–30 nm. Multi-element doping had a great in-fluence on the optical responses manifested as red shift in the absorption edge. The highest photocatalytic activity towards IC was observed for the Eu,C,N,S-doped ZrO2 (0.6 mol.%Eu) sample (k=1.09×10–2 min–1). The commercial ZrO2 showed the lowest photo-degradation activity (k=5.83×10–4 min–1). The results showed that the control of Eu doping in the C,N,S-ZrO2 was very important in reducing electron-hole recombination. The synergistic effect of Eu, C, N, and S in the ZrO2 matrix led to enhanced utilization of simulated solar energy for the degradation of IC through narrowing of bandgaps.
Bibliography:photocatalysis; indigo carmine; multi-elements-doped ZrO2; rare earths
In this study, C,N,S-doped ZrO2 and a series of Eu doped C,N,S-ZrO2 photocatalysts were synthesized by a coprecipitation method using thiourea as the source of C, N and S and Eu(NO3)·6H2O as source of Eu. The materials were characterized by X-ray dif-fraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Indigo carmine (IC) was chosen as a model for organic pollutants and used to evaluate the photocatalytic performance of the photo-catalysts under simulated solar light. Commercial ZrO2 was used as a reference material. XRD and Raman results indicated the for-mation of both tetragonal and monoclinic phase ZrO2 with particle size ranging from 8–30 nm. Multi-element doping had a great in-fluence on the optical responses manifested as red shift in the absorption edge. The highest photocatalytic activity towards IC was observed for the Eu,C,N,S-doped ZrO2 (0.6 mol.%Eu) sample (k=1.09×10–2 min–1). The commercial ZrO2 showed the lowest photo-degradation activity (k=5.83×10–4 min–1). The results showed that the control of Eu doping in the C,N,S-ZrO2 was very important in reducing electron-hole recombination. The synergistic effect of Eu, C, N, and S in the ZrO2 matrix led to enhanced utilization of simulated solar energy for the degradation of IC through narrowing of bandgaps.
11-2788/TF
ISSN:1002-0721
2509-4963
DOI:10.1016/s1002-0721(14)60447-6