Exploring the Physicochemical, Mechanical, and Photocatalytic Antibacterial Properties of a Methacrylate-Based Dental Material Loaded with ZnO Nanoparticles

While resin-based materials meet the many requirements of a restorative material, they lack adequate, long-lasting antimicrobial power. This study investigated a zinc oxide nanoparticle (ZnO NP)-loaded resin-blend (RB) toward a new antimicrobial photodynamic therapy (aPDT)-based approach for managin...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 14; p. 5075
Main Authors Comeau, Patricia, Burgess, Julia, Malekafzali, Niknaz, Leite, Maria Luisa, Lee, Aidan, Manso, Adriana
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:While resin-based materials meet the many requirements of a restorative material, they lack adequate, long-lasting antimicrobial power. This study investigated a zinc oxide nanoparticle (ZnO NP)-loaded resin-blend (RB) toward a new antimicrobial photodynamic therapy (aPDT)-based approach for managing dental caries. The results confirmed that up to 20 wt% ZnO NPs could be added without compromising the degree of conversion (DC) of the original blend. The DC achieved for the 20 wt% ZnO NP blend has been the highest reported. The effects on flexural strength (FS), shear bond strength to dentin (SBS), water sorption (WS), solubility (SL), and viability of under 1.35 J/cm blue light or dark conditions were limited to ≤20 wt% ZnO NP loading. The addition of up to 20 wt% ZnO NPs had a minimal impact on FS or SBS, while a reduction in the bacteria count was observed. The maximum loading resulted in an increase in SL. Furthermore, 28-day aging in 37 °C water increased the FS for all groups, while it sustained the reduction in bacteria count for the 20 wt% resin blends. Overall, the ZnO NP-loaded resin-based restorative material presents significant potential for use in aPDT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15145075