Coexistence of rod-like and lamellar eutectic growth patterns
We present the first observations of a large-scale coexistence between rod-like and lamellar eutectic growth patterns during directional solidification of a eutectic alloy. In situ experiments with real-time optical monitoring were carried out under microgravity onboard the International Space Stati...
Saved in:
Published in | Scripta materialia Vol. 207; p. 114314 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present the first observations of a large-scale coexistence between rod-like and lamellar eutectic growth patterns during directional solidification of a eutectic alloy. In situ experiments with real-time optical monitoring were carried out under microgravity onboard the International Space Station (ISS). We used the transparent succinonitrile-d,camphor eutectic alloy that ordinarily forms rod-like patterns. At low growth velocity, short lamellae stabilized at the contact line with a sample glass wall. In the presence of a controlled transverse temperature gradient, the coupled-growth pattern experienced a global drift along an inclined isotherm, and a stable lamellar domain spread over the solidification front. The propagative nature of the lamellar-to-rod transition was evidenced. The advance of the lamellar/rod domain boundary was determined by a slowly amplifying varicose instability of the lamellae. On a large scale, the domain boundary underwent a dynamic faceting.
[Display omitted] |
---|---|
ISSN: | 1359-6462 1872-8456 |
DOI: | 10.1016/j.scriptamat.2021.114314 |