A law of the iterated logarithm for stochastic integrals
By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = ( M t , t ⩾ 0) be a d-dimensional locally square integrable martingale, B = ( B t ) be a d-dimensional predictable process and X = B...
Saved in:
Published in | Stochastic processes and their applications Vol. 47; no. 2; pp. 215 - 228 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.1993
Elsevier Science Elsevier |
Series | Stochastic Processes and their Applications |
Subjects | |
Online Access | Get full text |
ISSN | 0304-4149 1879-209X |
DOI | 10.1016/0304-4149(93)90015-V |
Cover
Abstract | By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let
M = (
M
t
,
t ⩾ 0) be a
d-dimensional locally square integrable martingale,
B = (
B
t
) be a
d-dimensional predictable process and
X =
B
T
·
M. If lim
t→∞
〈
X〉
t
= ∞ a.s., |
B
t
|
2 =
o(〈
X〉
β
t
),
β < 1 and there exists a majorant measure for the Lévy system of
M, then
P
lim sup
t→∞
X
t
2〈
X〉
t
log log(〈
X〉
tV
e
=1
=1
. As an application of this LIL, a LIL for the quadratic form of i.i.d. random variables is given. In particular, let {
ξ
n
,
n ⩾ 1} be a sequence of i.i.d. random variables with
Eξ
n = 0,
Eξ
2
n = σ
2 > 0 and
Eξ
4
n = μ
4 < ∞
. If
F
n(λ)=
1
2πn
∫
−λ
λ
∑
j=1
n
χ
n
e
−
inμ
2
dμ
. Then for all λ ϵ (0, π],
P
lim sup
n→∞
n
(F
n(λ)−λσ
2⧸π)
2
log logn
=
2σ
4πλ+(μ
4− 3σ
4)λ
2
π
=1
. |
---|---|
AbstractList | By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let
M = (
M
t
,
t ⩾ 0) be a
d-dimensional locally square integrable martingale,
B = (
B
t
) be a
d-dimensional predictable process and
X =
B
T
·
M. If lim
t→∞
〈
X〉
t
= ∞ a.s., |
B
t
|
2 =
o(〈
X〉
β
t
),
β < 1 and there exists a majorant measure for the Lévy system of
M, then
P
lim sup
t→∞
X
t
2〈
X〉
t
log log(〈
X〉
tV
e
=1
=1
. As an application of this LIL, a LIL for the quadratic form of i.i.d. random variables is given. In particular, let {
ξ
n
,
n ⩾ 1} be a sequence of i.i.d. random variables with
Eξ
n = 0,
Eξ
2
n = σ
2 > 0 and
Eξ
4
n = μ
4 < ∞
. If
F
n(λ)=
1
2πn
∫
−λ
λ
∑
j=1
n
χ
n
e
−
inμ
2
dμ
. Then for all λ ϵ (0, π],
P
lim sup
n→∞
n
(F
n(λ)−λσ
2⧸π)
2
log logn
=
2σ
4πλ+(μ
4− 3σ
4)λ
2
π
=1
. By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = (Mt, t [greater-or-equal, slanted] 0) be a d-dimensional locally square integrable martingale, B = (Bt) be a d-dimensional predictable process and X = BT · M. If limt-->[infinity]t = [infinity] a.s., Bt2 = o([beta]t), [beta] 0 and E[xi]4n = [mu]4 < [infinity]. If . Then for all [lambda] [epsilon] (0, [pi]], . |
Author | Wang, Jia-gang |
Author_xml | – sequence: 1 givenname: Jia-gang surname: Wang fullname: Wang, Jia-gang organization: East China University of Chemical Technology, Shanghai, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4064455$$DView record in Pascal Francis http://econpapers.repec.org/article/eeespapps/v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215-228.htm$$DView record in RePEc |
BookMark | eNqFkDFPHDEQha0IpByQf5BiixSh2MTjtW_XFEgIAQlCoiEonTU3N-Yc7e2ubOsQ_x4fl1BQhOLNa977RnoHYm8YBxbiM8hvIGH-XTZS1xq0_WqbYyslmPr-g5hB19paSft7T8xeIx_FQUp_ZAkpBTPRnVU9Plajr_KKq5A5YuZl1Y8PGENerSs_xirlkVaYcqAqDJkfIvbpSOz7Yvzprx-KX5cXd-c_6pvbq5_nZzc1aaly3TI2yqBsTQPslV8YIt8a0qAkQCNZtXPVEQEQa43ACwtoPXcLWBituTkU1ztu5InJTTGsMT45Zk4TTlNyG9egbst5KgJrm2KhSBVNWwfjlOrcKq8L7MsONmEi7H3EgUJ6hWo519qYEjvZxSiOKUX2jkLGHMYhRwy9A-m2u7vtqG47qitfX3Z396Ws35T_4d-pne5qXMbcBI4uUeCBeBkiU3bLMfwf8AxV-JrP |
CODEN | STOPB7 |
CitedBy_id | crossref_primary_10_1134_S000511792103005X crossref_primary_10_1137_S0040585X97T991131 crossref_primary_10_1137_S0040585X97T989453 crossref_primary_10_4213_tvp5476 crossref_primary_10_4213_tvp5259 crossref_primary_10_1134_S00122661220100019 crossref_primary_10_1134_S0005117921050027 crossref_primary_10_1007_BF02986859 crossref_primary_10_1007_s10959_020_01035_8 crossref_primary_10_1016_j_spa_2025_104576 crossref_primary_10_1134_S0005117920010051 crossref_primary_10_1137_S0040585X97T989799 crossref_primary_10_1016_j_nahs_2020_100914 crossref_primary_10_4213_tvp5195 |
Cites_doi | 10.1080/17442508008833146 10.2307/2371287 10.1007/BFb0064922 |
ContentType | Journal Article |
Copyright | 1993 1994 INIST-CNRS |
Copyright_xml | – notice: 1993 – notice: 1994 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/0304-4149(93)90015-V |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-209X |
EndPage | 228 |
ExternalDocumentID | eeespapps_v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215_228_htm 4064455 10_1016_0304_4149_93_90015_V 030441499390015V |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 5VS 63O 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HX~ HZ~ IHE IXB J1W KOM LY1 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH WH7 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 0R 1 8P ADACO ADALY DKI G- HX HZ IPNFZ K M STF X X2L |
ID | FETCH-LOGICAL-c402t-7ea325a07531ef2fb5ccf75c41201130e27628cc11ce44a1eb91a9fe8b1b544e3 |
IEDL.DBID | IXB |
ISSN | 0304-4149 |
IngestDate | Wed Aug 18 03:10:07 EDT 2021 Wed Apr 02 07:29:32 EDT 2025 Tue Jul 01 03:23:55 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Fri Feb 23 02:31:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 60G44 stochastic calculus law of the iterated logarithm square integrable martingale 62M15 semimartingale 60H05 estimation of spectral function 60F15 Spectral function Stochastic calculus Statistical estimation Law of iterated logarithm Quadratic form Semimartingale Stochastic integral |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-7ea325a07531ef2fb5ccf75c41201130e27628cc11ce44a1eb91a9fe8b1b544e3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/030441499390015V |
PageCount | 14 |
ParticipantIDs | repec_primary_eeespapps_v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215_228_htm pascalfrancis_primary_4064455 crossref_citationtrail_10_1016_0304_4149_93_90015_V crossref_primary_10_1016_0304_4149_93_90015_V elsevier_sciencedirect_doi_10_1016_0304_4149_93_90015_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1993-09-01 |
PublicationDateYYYYMMDD | 1993-09-01 |
PublicationDate_xml | – month: 09 year: 1993 text: 1993-09-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Stochastic Processes and their Applications |
PublicationTitle | Stochastic processes and their applications |
PublicationYear | 1993 |
Publisher | Elsevier B.V Elsevier Science Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science – name: Elsevier |
References | Xu (BIB7) 1990; 6 Lepingle (BIB4) 1976 Lipster (BIB5) 1980; 3 Teicher (BIB6) 1973; 26 You (BIB8) 1990; 13 Hartman, Wintner (BIB1) 1940; 63 Jacod (BIB2) 1979 Jacod, Shiryaev (BIB3) 1987 Hartman (10.1016/0304-4149(93)90015-V_BIB1) 1940; 63 Lipster (10.1016/0304-4149(93)90015-V_BIB5) 1980; 3 You (10.1016/0304-4149(93)90015-V_BIB8) 1990; 13 Lepingle (10.1016/0304-4149(93)90015-V_BIB4) 1976 Jacod (10.1016/0304-4149(93)90015-V_BIB2) 1979 Teicher (10.1016/0304-4149(93)90015-V_BIB6) 1973; 26 Xu (10.1016/0304-4149(93)90015-V_BIB7) 1990; 6 Jacod (10.1016/0304-4149(93)90015-V_BIB3) 1987 |
References_xml | – start-page: 148 year: 1976 end-page: 161 ident: BIB4 article-title: Sur la comportement asymptotique des martingales locales publication-title: Lecture Notes in Math. No. 649 – year: 1987 ident: BIB3 article-title: Limit Theorems for Stochastic Processes – volume: 13 start-page: 83 year: 1990 end-page: 89 ident: BIB8 article-title: LIL for the spectral estimation of white noise publication-title: Acta Math. Appl. Sinica – volume: 63 start-page: 169 year: 1940 end-page: 176 ident: BIB1 article-title: On the law of iterated logarithm publication-title: Amer. J. Math. – year: 1979 ident: BIB2 article-title: Calcul Stochastique et Problèmes de Martingales publication-title: Lecture Notes in Math. No. 714 – volume: 26 start-page: 87 year: 1973 end-page: 94 ident: BIB6 article-title: Generalized exponential bounds, iterated logarithm and strong laws publication-title: Z. Wahrsch. Verw. Gebiete – volume: 6 start-page: 290 year: 1990 end-page: 301 ident: BIB7 article-title: The law of iterated logarithm for locally square integrable martingales publication-title: Chinese J. Appl. Probab. Statist. – volume: 3 start-page: 217 year: 1980 end-page: 228 ident: BIB5 article-title: A strong law of large numbers for local martingales publication-title: Stochastics – volume: 26 start-page: 87 year: 1973 ident: 10.1016/0304-4149(93)90015-V_BIB6 article-title: Generalized exponential bounds, iterated logarithm and strong laws publication-title: Z. Wahrsch. Verw. Gebiete – volume: 6 start-page: 290 year: 1990 ident: 10.1016/0304-4149(93)90015-V_BIB7 article-title: The law of iterated logarithm for locally square integrable martingales publication-title: Chinese J. Appl. Probab. Statist. – volume: 13 start-page: 83 year: 1990 ident: 10.1016/0304-4149(93)90015-V_BIB8 article-title: LIL for the spectral estimation of white noise publication-title: Acta Math. Appl. Sinica – volume: 3 start-page: 217 year: 1980 ident: 10.1016/0304-4149(93)90015-V_BIB5 article-title: A strong law of large numbers for local martingales publication-title: Stochastics doi: 10.1080/17442508008833146 – year: 1987 ident: 10.1016/0304-4149(93)90015-V_BIB3 – volume: 63 start-page: 169 year: 1940 ident: 10.1016/0304-4149(93)90015-V_BIB1 article-title: On the law of iterated logarithm publication-title: Amer. J. Math. doi: 10.2307/2371287 – start-page: 148 year: 1976 ident: 10.1016/0304-4149(93)90015-V_BIB4 article-title: Sur la comportement asymptotique des martingales locales – year: 1979 ident: 10.1016/0304-4149(93)90015-V_BIB2 article-title: Calcul Stochastique et Problèmes de Martingales doi: 10.1007/BFb0064922 |
SSID | ssj0001221 |
Score | 1.4432727 |
Snippet | By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales.... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 215 |
SubjectTerms | estimation of spectral function Exact sciences and technology law of the iterated logarithm law of the iterated logarithm semimartingale square integrable martingale stochastic calculus estimation of spectral function Limit theorems Mathematics Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use semimartingale square integrable martingale stochastic calculus |
Title | A law of the iterated logarithm for stochastic integrals |
URI | https://dx.doi.org/10.1016/0304-4149(93)90015-V http://econpapers.repec.org/article/eeespapps/v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215-228.htm |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqTlRVBS1Vl5d86KE9WItfJDkCAlEQPZXV3izbGWtXWnYjkhbx75lJshEcEBIHJ9LIdqyx9c1nZR6M_chNKKNNScgigDDKW4HbDIKyoKoyesiAopFv_hxf3pqrqZ0-i4Uht8oe-ztMb9G6l4x7bY6r-XxM__QM8vsCb-1o0yYIwxRUSjF809MBjKVqQ6-os6De6-g5eTweZD8L_audQ0xes06fKl-jzlJX7AKJ7D1UEJ9Zoost9rmnkPykW-U2-wDLL-zjzZB_tf7K8hO-8A98lTgKeZc5GUqOOIdX42Z2x5GqcqR9ceYpTzPvk0Ys6h12e3H-9-xS9DUSRMSbXyMy8FpZj4ZfS0gqBRtjymw0kiy7PgKFaJfHKGUEY7yEUEhfJMiDDNYY0N_YxnK1hO-MlzqFWJYBCVYwOInPiwyS9SbmxiSfRkyvdeNin0Cc6lgs3NpTjDTqSKOu0K7VqJuMmBhGVV0CjTf6Z2u1uxcHwSHGvzHy4MUuDZ9DzmKMtSN21u7aIAeAmqqp1e6_095k-HjERi6N-JpjU9gqeuP8SuVu1tztvnt9e2yz85YkB7V9ttHc_4MDZDRNOEQuf_37sD25T4PZ738 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAKobaAurzqQw_lYC1-bZIjINBCWU6w2ptlO2PtSrtLRNJW_feMk2wEB4TEwYk0sh1rbM18Vma-IeRnqlzudQiMZw6YElYz3GZgkQVV5N5CAjEbeXQ7GN6r64mePMuFiWGVre1vbHptrVtJv9Vmv5jN-vGfnkJ8n-GtHX3a-AP5iGBgEPnzryZnnTXmos69ir1Z7L5Kn-ODfif7lcnjehI2fs09bRa2RKWFptoFItlHKMA_c0WXX8hWiyHpabPMr2QNlt_I51FHwFpuk_SUzu0_-hAoCmlDnQw5RUOHd-NquqCIVSniPj-1kaiZtqwR83KH3F9e3J0PWVskgXm8-lUsASuFtuj5JYcggtPeh0R7xaNrlycg0Nyl3nPuQSnLwWXcZgFSx51WCuQuWV8-LOE7obkMzue5Q4TlFE5i0yyBoK3yqVLBhh6RK90Y3zKIx0IWc7MKFYsaNVGjJpOm1qgZ9wjrRhUNg8Yb_ZOV2s2Lk2DQyL8x8vDFLnWfQ9CilNY9cl7vWicHgDKWUyvNXyOtSvDxH1uMacTXDJvAVsQ3zi9EaqbVYu_d6_tBNoZ3oxtzc3X7e598akInY7TaAVmvHv_AIcKbyh3V5_cJ_nPxqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+law+of+the+iterated+logarithm+for+stochastic+integrals&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Wang%2C+Jia-gang&rft.date=1993-09-01&rft.pub=Elsevier+B.V&rft.issn=0304-4149&rft.eissn=1879-209X&rft.volume=47&rft.issue=2&rft.spage=215&rft.epage=228&rft_id=info:doi/10.1016%2F0304-4149%2893%2990015-V&rft.externalDocID=030441499390015V |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon |