A law of the iterated logarithm for stochastic integrals

By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = ( M t , t ⩾ 0) be a d-dimensional locally square integrable martingale, B = ( B t ) be a d-dimensional predictable process and X = B...

Full description

Saved in:
Bibliographic Details
Published inStochastic processes and their applications Vol. 47; no. 2; pp. 215 - 228
Main Author Wang, Jia-gang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.1993
Elsevier Science
Elsevier
SeriesStochastic Processes and their Applications
Subjects
Online AccessGet full text
ISSN0304-4149
1879-209X
DOI10.1016/0304-4149(93)90015-V

Cover

Abstract By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = ( M t , t ⩾ 0) be a d-dimensional locally square integrable martingale, B = ( B t ) be a d-dimensional predictable process and X = B T · M. If lim t→∞ 〈 X〉 t = ∞ a.s., | B t | 2 = o(〈 X〉 β t ), β < 1 and there exists a majorant measure for the Lévy system of M, then P lim sup t→∞ X t 2〈 X〉 t log log(〈 X〉 tV e =1 =1 . As an application of this LIL, a LIL for the quadratic form of i.i.d. random variables is given. In particular, let { ξ n , n ⩾ 1} be a sequence of i.i.d. random variables with Eξ n = 0, Eξ 2 n = σ 2 > 0 and Eξ 4 n = μ 4 < ∞ . If F n(λ)= 1 2πn ∫ −λ λ ∑ j=1 n χ n e − inμ 2 dμ . Then for all λ ϵ (0, π], P lim sup n→∞ n (F n(λ)−λσ 2⧸π) 2 log logn = 2σ 4πλ+(μ 4− 3σ 4)λ 2 π =1 .
AbstractList By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = ( M t , t ⩾ 0) be a d-dimensional locally square integrable martingale, B = ( B t ) be a d-dimensional predictable process and X = B T · M. If lim t→∞ 〈 X〉 t = ∞ a.s., | B t | 2 = o(〈 X〉 β t ), β < 1 and there exists a majorant measure for the Lévy system of M, then P lim sup t→∞ X t 2〈 X〉 t log log(〈 X〉 tV e =1 =1 . As an application of this LIL, a LIL for the quadratic form of i.i.d. random variables is given. In particular, let { ξ n , n ⩾ 1} be a sequence of i.i.d. random variables with Eξ n = 0, Eξ 2 n = σ 2 > 0 and Eξ 4 n = μ 4 < ∞ . If F n(λ)= 1 2πn ∫ −λ λ ∑ j=1 n χ n e − inμ 2 dμ . Then for all λ ϵ (0, π], P lim sup n→∞ n (F n(λ)−λσ 2⧸π) 2 log logn = 2σ 4πλ+(μ 4− 3σ 4)λ 2 π =1 .
By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = (Mt, t [greater-or-equal, slanted] 0) be a d-dimensional locally square integrable martingale, B = (Bt) be a d-dimensional predictable process and X = BT · M. If limt-->[infinity]t = [infinity] a.s., Bt2 = o([beta]t), [beta] 0 and E[xi]4n = [mu]4 < [infinity]. If . Then for all [lambda] [epsilon] (0, [pi]], .
Author Wang, Jia-gang
Author_xml – sequence: 1
  givenname: Jia-gang
  surname: Wang
  fullname: Wang, Jia-gang
  organization: East China University of Chemical Technology, Shanghai, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4064455$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeespapps/v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215-228.htm$$DView record in RePEc
BookMark eNqFkDFPHDEQha0IpByQf5BiixSh2MTjtW_XFEgIAQlCoiEonTU3N-Yc7e2ubOsQ_x4fl1BQhOLNa977RnoHYm8YBxbiM8hvIGH-XTZS1xq0_WqbYyslmPr-g5hB19paSft7T8xeIx_FQUp_ZAkpBTPRnVU9Plajr_KKq5A5YuZl1Y8PGENerSs_xirlkVaYcqAqDJkfIvbpSOz7Yvzprx-KX5cXd-c_6pvbq5_nZzc1aaly3TI2yqBsTQPslV8YIt8a0qAkQCNZtXPVEQEQa43ACwtoPXcLWBituTkU1ztu5InJTTGsMT45Zk4TTlNyG9egbst5KgJrm2KhSBVNWwfjlOrcKq8L7MsONmEi7H3EgUJ6hWo519qYEjvZxSiOKUX2jkLGHMYhRwy9A-m2u7vtqG47qitfX3Z396Ws35T_4d-pne5qXMbcBI4uUeCBeBkiU3bLMfwf8AxV-JrP
CODEN STOPB7
CitedBy_id crossref_primary_10_1134_S000511792103005X
crossref_primary_10_1137_S0040585X97T991131
crossref_primary_10_1137_S0040585X97T989453
crossref_primary_10_4213_tvp5476
crossref_primary_10_4213_tvp5259
crossref_primary_10_1134_S00122661220100019
crossref_primary_10_1134_S0005117921050027
crossref_primary_10_1007_BF02986859
crossref_primary_10_1007_s10959_020_01035_8
crossref_primary_10_1016_j_spa_2025_104576
crossref_primary_10_1134_S0005117920010051
crossref_primary_10_1137_S0040585X97T989799
crossref_primary_10_1016_j_nahs_2020_100914
crossref_primary_10_4213_tvp5195
Cites_doi 10.1080/17442508008833146
10.2307/2371287
10.1007/BFb0064922
ContentType Journal Article
Copyright 1993
1994 INIST-CNRS
Copyright_xml – notice: 1993
– notice: 1994 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/0304-4149(93)90015-V
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-209X
EndPage 228
ExternalDocumentID eeespapps_v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215_228_htm
4064455
10_1016_0304_4149_93_90015_V
030441499390015V
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
5VS
63O
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
0R
1
8P
ADACO
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c402t-7ea325a07531ef2fb5ccf75c41201130e27628cc11ce44a1eb91a9fe8b1b544e3
IEDL.DBID IXB
ISSN 0304-4149
IngestDate Wed Aug 18 03:10:07 EDT 2021
Wed Apr 02 07:29:32 EDT 2025
Tue Jul 01 03:23:55 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Fri Feb 23 02:31:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 60G44
stochastic calculus
law of the iterated logarithm
square integrable martingale
62M15
semimartingale
60H05
estimation of spectral function
60F15
Spectral function
Stochastic calculus
Statistical estimation
Law of iterated logarithm
Quadratic form
Semimartingale
Stochastic integral
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-7ea325a07531ef2fb5ccf75c41201130e27628cc11ce44a1eb91a9fe8b1b544e3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/030441499390015V
PageCount 14
ParticipantIDs repec_primary_eeespapps_v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215_228_htm
pascalfrancis_primary_4064455
crossref_citationtrail_10_1016_0304_4149_93_90015_V
crossref_primary_10_1016_0304_4149_93_90015_V
elsevier_sciencedirect_doi_10_1016_0304_4149_93_90015_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1993-09-01
PublicationDateYYYYMMDD 1993-09-01
PublicationDate_xml – month: 09
  year: 1993
  text: 1993-09-01
  day: 01
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Stochastic Processes and their Applications
PublicationTitle Stochastic processes and their applications
PublicationYear 1993
Publisher Elsevier B.V
Elsevier Science
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier
References Xu (BIB7) 1990; 6
Lepingle (BIB4) 1976
Lipster (BIB5) 1980; 3
Teicher (BIB6) 1973; 26
You (BIB8) 1990; 13
Hartman, Wintner (BIB1) 1940; 63
Jacod (BIB2) 1979
Jacod, Shiryaev (BIB3) 1987
Hartman (10.1016/0304-4149(93)90015-V_BIB1) 1940; 63
Lipster (10.1016/0304-4149(93)90015-V_BIB5) 1980; 3
You (10.1016/0304-4149(93)90015-V_BIB8) 1990; 13
Lepingle (10.1016/0304-4149(93)90015-V_BIB4) 1976
Jacod (10.1016/0304-4149(93)90015-V_BIB2) 1979
Teicher (10.1016/0304-4149(93)90015-V_BIB6) 1973; 26
Xu (10.1016/0304-4149(93)90015-V_BIB7) 1990; 6
Jacod (10.1016/0304-4149(93)90015-V_BIB3) 1987
References_xml – start-page: 148
  year: 1976
  end-page: 161
  ident: BIB4
  article-title: Sur la comportement asymptotique des martingales locales
  publication-title: Lecture Notes in Math. No. 649
– year: 1987
  ident: BIB3
  article-title: Limit Theorems for Stochastic Processes
– volume: 13
  start-page: 83
  year: 1990
  end-page: 89
  ident: BIB8
  article-title: LIL for the spectral estimation of white noise
  publication-title: Acta Math. Appl. Sinica
– volume: 63
  start-page: 169
  year: 1940
  end-page: 176
  ident: BIB1
  article-title: On the law of iterated logarithm
  publication-title: Amer. J. Math.
– year: 1979
  ident: BIB2
  article-title: Calcul Stochastique et Problèmes de Martingales
  publication-title: Lecture Notes in Math. No. 714
– volume: 26
  start-page: 87
  year: 1973
  end-page: 94
  ident: BIB6
  article-title: Generalized exponential bounds, iterated logarithm and strong laws
  publication-title: Z. Wahrsch. Verw. Gebiete
– volume: 6
  start-page: 290
  year: 1990
  end-page: 301
  ident: BIB7
  article-title: The law of iterated logarithm for locally square integrable martingales
  publication-title: Chinese J. Appl. Probab. Statist.
– volume: 3
  start-page: 217
  year: 1980
  end-page: 228
  ident: BIB5
  article-title: A strong law of large numbers for local martingales
  publication-title: Stochastics
– volume: 26
  start-page: 87
  year: 1973
  ident: 10.1016/0304-4149(93)90015-V_BIB6
  article-title: Generalized exponential bounds, iterated logarithm and strong laws
  publication-title: Z. Wahrsch. Verw. Gebiete
– volume: 6
  start-page: 290
  year: 1990
  ident: 10.1016/0304-4149(93)90015-V_BIB7
  article-title: The law of iterated logarithm for locally square integrable martingales
  publication-title: Chinese J. Appl. Probab. Statist.
– volume: 13
  start-page: 83
  year: 1990
  ident: 10.1016/0304-4149(93)90015-V_BIB8
  article-title: LIL for the spectral estimation of white noise
  publication-title: Acta Math. Appl. Sinica
– volume: 3
  start-page: 217
  year: 1980
  ident: 10.1016/0304-4149(93)90015-V_BIB5
  article-title: A strong law of large numbers for local martingales
  publication-title: Stochastics
  doi: 10.1080/17442508008833146
– year: 1987
  ident: 10.1016/0304-4149(93)90015-V_BIB3
– volume: 63
  start-page: 169
  year: 1940
  ident: 10.1016/0304-4149(93)90015-V_BIB1
  article-title: On the law of iterated logarithm
  publication-title: Amer. J. Math.
  doi: 10.2307/2371287
– start-page: 148
  year: 1976
  ident: 10.1016/0304-4149(93)90015-V_BIB4
  article-title: Sur la comportement asymptotique des martingales locales
– year: 1979
  ident: 10.1016/0304-4149(93)90015-V_BIB2
  article-title: Calcul Stochastique et Problèmes de Martingales
  doi: 10.1007/BFb0064922
SSID ssj0001221
Score 1.4432727
Snippet By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales....
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 215
SubjectTerms estimation of spectral function
Exact sciences and technology
law of the iterated logarithm
law of the iterated logarithm semimartingale square integrable martingale stochastic calculus estimation of spectral function
Limit theorems
Mathematics
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
semimartingale
square integrable martingale
stochastic calculus
Title A law of the iterated logarithm for stochastic integrals
URI https://dx.doi.org/10.1016/0304-4149(93)90015-V
http://econpapers.repec.org/article/eeespapps/v_3a47_3ay_3a1993_3ai_3a2_3ap_3a215-228.htm
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqTlRVBS1Vl5d86KE9WItfJDkCAlEQPZXV3izbGWtXWnYjkhbx75lJshEcEBIHJ9LIdqyx9c1nZR6M_chNKKNNScgigDDKW4HbDIKyoKoyesiAopFv_hxf3pqrqZ0-i4Uht8oe-ztMb9G6l4x7bY6r-XxM__QM8vsCb-1o0yYIwxRUSjF809MBjKVqQ6-os6De6-g5eTweZD8L_audQ0xes06fKl-jzlJX7AKJ7D1UEJ9Zoost9rmnkPykW-U2-wDLL-zjzZB_tf7K8hO-8A98lTgKeZc5GUqOOIdX42Z2x5GqcqR9ceYpTzPvk0Ys6h12e3H-9-xS9DUSRMSbXyMy8FpZj4ZfS0gqBRtjymw0kiy7PgKFaJfHKGUEY7yEUEhfJMiDDNYY0N_YxnK1hO-MlzqFWJYBCVYwOInPiwyS9SbmxiSfRkyvdeNin0Cc6lgs3NpTjDTqSKOu0K7VqJuMmBhGVV0CjTf6Z2u1uxcHwSHGvzHy4MUuDZ9DzmKMtSN21u7aIAeAmqqp1e6_095k-HjERi6N-JpjU9gqeuP8SuVu1tztvnt9e2yz85YkB7V9ttHc_4MDZDRNOEQuf_37sD25T4PZ738
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAKobaAurzqQw_lYC1-bZIjINBCWU6w2ptlO2PtSrtLRNJW_feMk2wEB4TEwYk0sh1rbM18Vma-IeRnqlzudQiMZw6YElYz3GZgkQVV5N5CAjEbeXQ7GN6r64mePMuFiWGVre1vbHptrVtJv9Vmv5jN-vGfnkJ8n-GtHX3a-AP5iGBgEPnzryZnnTXmos69ir1Z7L5Kn-ODfif7lcnjehI2fs09bRa2RKWFptoFItlHKMA_c0WXX8hWiyHpabPMr2QNlt_I51FHwFpuk_SUzu0_-hAoCmlDnQw5RUOHd-NquqCIVSniPj-1kaiZtqwR83KH3F9e3J0PWVskgXm8-lUsASuFtuj5JYcggtPeh0R7xaNrlycg0Nyl3nPuQSnLwWXcZgFSx51WCuQuWV8-LOE7obkMzue5Q4TlFE5i0yyBoK3yqVLBhh6RK90Y3zKIx0IWc7MKFYsaNVGjJpOm1qgZ9wjrRhUNg8Yb_ZOV2s2Lk2DQyL8x8vDFLnWfQ9CilNY9cl7vWicHgDKWUyvNXyOtSvDxH1uMacTXDJvAVsQ3zi9EaqbVYu_d6_tBNoZ3oxtzc3X7e598akInY7TaAVmvHv_AIcKbyh3V5_cJ_nPxqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+law+of+the+iterated+logarithm+for+stochastic+integrals&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Wang%2C+Jia-gang&rft.date=1993-09-01&rft.pub=Elsevier+B.V&rft.issn=0304-4149&rft.eissn=1879-209X&rft.volume=47&rft.issue=2&rft.spage=215&rft.epage=228&rft_id=info:doi/10.1016%2F0304-4149%2893%2990015-V&rft.externalDocID=030441499390015V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon