A law of the iterated logarithm for stochastic integrals

By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = ( M t , t ⩾ 0) be a d-dimensional locally square integrable martingale, B = ( B t ) be a d-dimensional predictable process and X = B...

Full description

Saved in:
Bibliographic Details
Published inStochastic processes and their applications Vol. 47; no. 2; pp. 215 - 228
Main Author Wang, Jia-gang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.1993
Elsevier Science
Elsevier
SeriesStochastic Processes and their Applications
Subjects
Online AccessGet full text
ISSN0304-4149
1879-209X
DOI10.1016/0304-4149(93)90015-V

Cover

More Information
Summary:By using the Itô calculus, a law of the iterated logarithm (LIL) is established for stochastic integrals with respect to locally square integrable martingales. Let M = ( M t , t ⩾ 0) be a d-dimensional locally square integrable martingale, B = ( B t ) be a d-dimensional predictable process and X = B T · M. If lim t→∞ 〈 X〉 t = ∞ a.s., | B t | 2 = o(〈 X〉 β t ), β < 1 and there exists a majorant measure for the Lévy system of M, then P lim sup t→∞ X t 2〈 X〉 t log log(〈 X〉 tV e =1 =1 . As an application of this LIL, a LIL for the quadratic form of i.i.d. random variables is given. In particular, let { ξ n , n ⩾ 1} be a sequence of i.i.d. random variables with Eξ n = 0, Eξ 2 n = σ 2 > 0 and Eξ 4 n = μ 4 < ∞ . If F n(λ)= 1 2πn ∫ −λ λ ∑ j=1 n χ n e − inμ 2 dμ . Then for all λ ϵ (0, π], P lim sup n→∞ n (F n(λ)−λσ 2⧸π) 2 log logn = 2σ 4πλ+(μ 4− 3σ 4)λ 2 π =1 .
ISSN:0304-4149
1879-209X
DOI:10.1016/0304-4149(93)90015-V