Rescue of rhesus macaques from the lethality of aerosolized ricin toxin

Ricin toxin (RT) ranks at the top of the list of bioweapons of concern to civilian and military personnel alike, due to its high potential for morbidity and mortality after inhalation. In nonhuman primates, aerosolized ricin triggers severe acute respiratory distress characterized by perivascular an...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 4; no. 1
Main Authors Roy, Chad J, Ehrbar, Dylan J, Bohorova, Natasha, Bohorov, Ognian, Kim, Do, Pauly, Michael, Whaley, Kevin, Rong, Yinghui, Torres-Velez, Fernando J, Vitetta, Ellen S, Didier, Peter J, Doyle-Meyers, Lara, Zeitlin, Larry, Mantis, Nicholas J
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 10.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ricin toxin (RT) ranks at the top of the list of bioweapons of concern to civilian and military personnel alike, due to its high potential for morbidity and mortality after inhalation. In nonhuman primates, aerosolized ricin triggers severe acute respiratory distress characterized by perivascular and alveolar edema, neutrophilic infiltration, and severe necrotizing bronchiolitis and alveolitis. There are currently no approved countermeasures for ricin intoxication. Here, we report the therapeutic potential of a humanized mAb against an immunodominant epitope on ricin's enzymatic A chain (RTA). Rhesus macaques that received i.v. huPB10 4 hours after a lethal dose of ricin aerosol exposure survived toxin challenge, whereas control animals succumbed to ricin intoxication within 30 hours. Antibody intervention at 12 hours resulted in the survival of 1 of 5 monkeys. Changes in proinflammatory cytokine, chemokine, and growth factor profiles in bronchial alveolar lavage fluids before and after toxin challenge successfully clustered animals by treatment group and survival, indicating a relationship between local tissue damage and experimental outcome. This study represents the first demonstration, to our knowledge, in nonhuman primates that the lethal effects of inhalational ricin exposure can be negated by a drug candidate, and it opens up a path forward for product development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.124771