Adventitious shoot regeneration and in vitro biosynthesis of steroidal lactones in Withania coagulans (Stocks) Dunal

A micropropagation system through leaf explant culture has been developed for Withania coagulans. Shoot bud proliferation occurred through both adventitious and de novo routes depending on the hormonal regime of the culture medium. Green compact nodular organogenic callus developed on Murashige and...

Full description

Saved in:
Bibliographic Details
Published inPlant cell, tissue and organ culture Vol. 105; no. 1; pp. 135 - 140
Main Authors Jain, Rohit, Sinha, Arunima, Jain, Devendra, Kachhwaha, Sumita, Kothari, S. L
Format Journal Article
LanguageEnglish
Published Dordrecht Dordrecht : Springer Netherlands 01.04.2011
Springer Netherlands
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A micropropagation system through leaf explant culture has been developed for Withania coagulans. Shoot bud proliferation occurred through both adventitious and de novo routes depending on the hormonal regime of the culture medium. Green compact nodular organogenic callus developed on Murashige and Skoog (MS) medium supplemented with 2.3 μM kinetin (Kn) and lower levels of 6-benzyladenine (BA) (13.3 μM) while multiple adventitious shoot bud differentiation occurred on medium fortified with 2.3 μM kinetin (Kn) and higher levels of BA (22.2 μM). Shoot buds were transferred to proliferation medium containing 2.2 μM BA, 2.3 μM Kn, and 3.9 μM phloroglucinol (PG) for further growth and development of shoot system. Elongated shoots were rooted using a two-step procedure involving pulse treatment of 7 days in a medium containing 71.6 μM choline chloride (CC) and 3.9 μM PG and then transferred to rooting medium containing ½ MS, 1.2 μM IBA, 3.6 μM PAA, and 14.3 μM CC for 3 weeks. Well-rooted plants were transferred to a greenhouse for hardening and further growth. Random amplification of polymorphic DNA (RAPD) showed monomorphic bands in all the plants thereby confirming clonality of the regenerants. Thin layer chromatography (TLC) showed the presence of withanolides in the regenerated plants. Quantification through reverse-phase HPLC revealed increased concentration of withanolides in the regenerated plants compared to the field-grown mother plant. Accumulation of withaferin A and withanolide A increased up to twofold and that of withanone up to tenfold. Direct regeneration via leaf explants will be useful for Agrobacterium-mediated genetic transformation, and will facilitate pathway manipulation using metabolic engineering for bioactive withanolides.
Bibliography:http://dx.doi.org/10.1007/s11240-010-9840-3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-6857
1573-5044
DOI:10.1007/s11240-010-9840-3