3-D ultrasound guidance of surgical robotics: a feasibility study

Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 53; no. 11; pp. 1999 - 2008
Main Authors Pua, Eric C., Fronheiser, Matthew P., Noble, Joanna R., Light, Edward D., Wolf, Patrick D., von Allmen, Daniel, Smith, Stephen W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2006.140