Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders

Olfactory dysfunction is a frequent and early feature of patients with neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) and is very uncommon in patients with frontotemporal dementia (FTD). Mechanisms underlying this clinical manifestation are poorly understoo...

Full description

Saved in:
Bibliographic Details
Published inActa neuropathologica Vol. 122; no. 1; pp. 61 - 74
Main Authors Mundiñano, Iñaki-Carril, Caballero, Maria-Cristina, Ordóñez, Cristina, Hernandez, Maria, DiCaudo, Carla, Marcilla, Irene, Erro, Maria-Elena, Tuñon, Maria-Teresa, Luquin, Maria-Rosario
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.07.2011
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Olfactory dysfunction is a frequent and early feature of patients with neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) and is very uncommon in patients with frontotemporal dementia (FTD). Mechanisms underlying this clinical manifestation are poorly understood but the premature deposition of protein aggregates in the olfactory bulb (OB) of these patients might impair its synaptic organization, thus accounting for the smell deficits. Tau, β-amyloid and alpha-synuclein deposits were studied in 41 human OBs with histological diagnosis of AD ( n  = 24), PD ( n  = 6), FTD ( n  = 11) and compared with the OB of 15 control subjects. Tau pathology was present in the OB of all patients, irrespective of the histological diagnosis, while β-amyloid and alpha-synuclein protein deposit were frequently observed in AD and PD, respectively. Using stereological techniques we found an increased number of dopaminergic periglomerular neurons in the OB of AD, PD and FTD patients when compared with age-matched controls. Moreover, volumetric measurements of OBs showed a significant decrease only in AD patients, while the OB volume was similar to control in PD or FTD cases. The increased dopaminergic tone created in the OBs of these patients could reflect a compensatory mechanism created by the early degeneration of other neurotransmitter systems and might contribute to the olfactory dysfunction exhibited by patients with neurodegenerative disorders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0001-6322
1432-0533
DOI:10.1007/s00401-011-0830-2