Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features
The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer le...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer learning for CD by reusing DL models pretrained for other tasks. However, the performance of the transfer-learning-based models decreases as much as the target images differ from the ones used for training the model. To overcome this limit, we propose an unsupervised CD method that exploits multiresolution deep feature maps derived by a convolutional autoencoder (CAE). It automatically learns spatial features from the input during the training phase without requiring any labeled data. The proposed method processes the bitemporal images to obtain and compare multiresolution bitemporal feature maps. These feature maps are then analyzed by a feature-selection technique to select the most discriminant ones. Furthermore, an aggregated multiresolution difference image is computed and used for a detail-preserving multiscale CD. In the context of this CD approach, we propose two alternative strategies to retrieve multiscale reliability maps. We tested the proposed method on bitemporal multispectral images acquired by Landsat-5 and Landsat-8 representing burned areas and Sentinel-2 images representing deforested areas. Results confirm the effectiveness of the proposed CD technique. |
---|---|
AbstractList | The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer learning for CD by reusing DL models pretrained for other tasks. However, the performance of the transfer-learning-based models decreases as much as the target images differ from the ones used for training the model. To overcome this limit, we propose an unsupervised CD method that exploits multiresolution deep feature maps derived by a convolutional autoencoder (CAE). It automatically learns spatial features from the input during the training phase without requiring any labeled data. The proposed method processes the bitemporal images to obtain and compare multiresolution bitemporal feature maps. These feature maps are then analyzed by a feature-selection technique to select the most discriminant ones. Furthermore, an aggregated multiresolution difference image is computed and used for a detail-preserving multiscale CD. In the context of this CD approach, we propose two alternative strategies to retrieve multiscale reliability maps. We tested the proposed method on bitemporal multispectral images acquired by Landsat-5 and Landsat-8 representing burned areas and Sentinel-2 images representing deforested areas. Results confirm the effectiveness of the proposed CD technique. |
Author | Bergamasco, Luca Bruzzone, Lorenzo Bovolo, Francesca Saha, Sudipan |
Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0001-7815-9001 surname: Bergamasco fullname: Bergamasco, Luca email: lbergamasco@fbk.eu organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy – sequence: 2 givenname: Sudipan orcidid: 0000-0002-9440-0720 surname: Saha fullname: Saha, Sudipan email: sudipan.saha@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Ottobrunn, Germany – sequence: 3 givenname: Francesca orcidid: 0000-0003-3104-7656 surname: Bovolo fullname: Bovolo, Francesca email: bovolo@fbk.eu organization: Center of Digital Society, Fondazione Bruno Kessler, Trento, Italy – sequence: 4 givenname: Lorenzo orcidid: 0000-0002-6036-459X surname: Bruzzone fullname: Bruzzone, Lorenzo email: lorenzo.bruzzone@unitn.it organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy |
BookMark | eNp9UNFKwzAUDTLBbfoB4kvB586kTdLmcVQ3hYmgm68lTW5nRm1mkg78e1s2fPBB7sPl3nvO5ZwzQaPWtoDQNcEzQrC4Wy9f32YJTpJZSiju6wyNCWN5jDmlIzTGRPA4yUVygSbe7zAmlJFsjN43re_24A7Gg46KD9luIbqHACoY20Ybb9ptVNj2YJtu2MgmnnfBQqusBhc9d00wDvzpGi1Ahq6fL9F5LRsPV6c-RZvFw7p4jFcvy6divooVxUmIucw1qzgmWgPnJMMqrTmpEqVIVuNccJ6DFgw4k5SLGvMqFzoDnTKW6roS6RTdHv_unf3qwIdyZzvXq_RlwtOM0t7mgMqOKOWs9w7qUpkgB8HBSdOUBJdDiOUQYjmEWJ5C7JnkD3PvzKd03_9ybo4cAwC_-N6LECxLfwCkm4Cl |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_rs15071868 crossref_primary_10_1016_j_isprsjprs_2024_12_010 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_TGRS_2022_3204834 crossref_primary_10_1109_JSTARS_2024_3350044 crossref_primary_10_1364_AO_479955 crossref_primary_10_1109_TGRS_2023_3314217 crossref_primary_10_1109_TGRS_2024_3432819 crossref_primary_10_1080_10589759_2025_2456673 crossref_primary_10_3390_rs16132355 crossref_primary_10_1109_TGRS_2022_3224293 crossref_primary_10_3390_rs16193719 crossref_primary_10_1016_j_displa_2024_102840 crossref_primary_10_1109_JSTARS_2024_3371015 crossref_primary_10_1109_TGRS_2022_3213925 crossref_primary_10_1109_JSTARS_2023_3327340 crossref_primary_10_1109_TGRS_2024_3438465 crossref_primary_10_1109_TGRS_2023_3235917 crossref_primary_10_1109_JSTARS_2022_3217038 crossref_primary_10_1109_TGRS_2024_3379431 crossref_primary_10_1109_JSTARS_2024_3361183 crossref_primary_10_1016_j_isprsjprs_2023_11_004 crossref_primary_10_3390_atmos14121813 |
Cites_doi | 10.1109/JSTARS.2019.2936771 10.1109/IGARSS.2019.8900173 10.1109/TGRS.2017.2739800 10.1109/LGRS.2008.2007429 10.1109/LGRS.2019.2896948 10.1080/01431161.2016.1171928 10.1109/TGRS.2007.895835 10.1016/S0303-2434(03)00010-2 10.1109/LGRS.2020.2990284 10.1109/TGRS.2018.2886643 10.1109/TGRS.2005.857987 10.1109/LGRS.2009.2026188 10.1109/TIP.2002.999678 10.1109/LGRS.2018.2868704 10.1109/LGRS.2017.2738149 10.1117/12.2031104 10.1109/JSTARS.2020.2982631 10.1109/TGRS.2018.2849692 10.1109/LGRS.2016.2601930 10.1007/978-3-642-21735-7_7 10.1109/TSMC.1979.4310076 10.1109/TGRS.2019.2948659 10.1109/Multi-Temp.2019.8866958 10.1109/LGRS.2015.2478256 10.1109/TPAMI.1986.4767851 10.1016/j.rse.2019.111345 10.1016/j.isprsjprs.2016.02.013 10.1109/TGRS.2017.2707528 10.1109/IGARSS.2018.8519195 10.1117/12.2533812 10.1109/JSTARS.2017.2712119 10.1109/LGRS.2010.2102333 10.1016/S0378-1127(00)00594-6 10.1109/IGARSS.2016.7729290 10.1109/IGARSS.2009.5417370 10.1109/TII.2018.2873492 10.1109/TGRS.2018.2863224 10.1109/TGRS.2020.3001584 10.1109/TNNLS.2016.2636227 10.1016/j.biocon.2014.12.006 10.1109/LGRS.2017.2763182 10.1016/j.isprsjprs.2018.04.014 10.1109/36.843009 10.1117/12.2325149 10.1080/014311600210614 10.1109/MULTITEMP.2007.4293035 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2022.3140404 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 19 |
ExternalDocumentID | 10_1109_TGRS_2022_3140404 9669957 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c402t-6a8d5b601dde66170c3f61b2cc17f089668ed95e65a469f06b89d7ed3553dfb93 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Tue Aug 26 15:40:22 EDT 2025 Tue Jul 01 01:34:34 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Aug 27 02:49:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-6a8d5b601dde66170c3f61b2cc17f089668ed95e65a469f06b89d7ed3553dfb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3104-7656 0000-0002-9440-0720 0000-0001-7815-9001 0000-0002-6036-459X |
OpenAccessLink | https://hdl.handle.net/11572/330111 |
PQID | 2637441459 |
PQPubID | 85465 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2022_3140404 ieee_primary_9669957 proquest_journals_2637441459 crossref_primary_10_1109_TGRS_2022_3140404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref10 ref17 ref16 ref19 ref18 Ioffe (ref44) 2015 ref51 ref50 ref46 ref48 ref42 ref41 ref43 Mengistu (ref2) 2007; 1 El Amin (ref11) 2016; 10011 ref49 Lyon (ref3) 1998; 64 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 Maini (ref47) 2009; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Maas (ref45); 30 |
References_xml | – ident: ref40 doi: 10.1109/JSTARS.2019.2936771 – ident: ref17 doi: 10.1109/IGARSS.2019.8900173 – ident: ref24 doi: 10.1109/TGRS.2017.2739800 – ident: ref28 doi: 10.1109/LGRS.2008.2007429 – ident: ref19 doi: 10.1109/LGRS.2019.2896948 – ident: ref37 doi: 10.1080/01431161.2016.1171928 – ident: ref43 doi: 10.1109/TGRS.2007.895835 – volume: 30 start-page: 3 issue: 1 volume-title: Proc. ICML ident: ref45 article-title: Rectifier nonlinearities improve neural network acoustic models – ident: ref32 doi: 10.1016/S0303-2434(03)00010-2 – year: 2015 ident: ref44 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv:1502.03167 – ident: ref22 doi: 10.1109/LGRS.2020.2990284 – ident: ref8 doi: 10.1109/TGRS.2018.2886643 – ident: ref30 doi: 10.1109/TGRS.2005.857987 – ident: ref31 doi: 10.1109/LGRS.2009.2026188 – volume: 64 start-page: 143 issue: 2 year: 1998 ident: ref3 article-title: A change detection experiment using vegetation indices publication-title: Photogramm. Eng. remote Sens. – ident: ref52 doi: 10.1109/TIP.2002.999678 – ident: ref16 doi: 10.1109/LGRS.2018.2868704 – ident: ref10 doi: 10.1109/LGRS.2017.2738149 – volume: 1 start-page: 99 issue: 5 year: 2007 ident: ref2 article-title: Application of remote sensing and GIS inland use/land cover mapping and change detection in a part of south western Nigeria publication-title: Afr. J. Environ. Sci. Technol. – ident: ref25 doi: 10.1117/12.2031104 – ident: ref42 doi: 10.1109/JSTARS.2020.2982631 – ident: ref14 doi: 10.1109/TGRS.2018.2849692 – ident: ref27 doi: 10.1109/LGRS.2016.2601930 – ident: ref36 doi: 10.1007/978-3-642-21735-7_7 – ident: ref48 doi: 10.1109/TSMC.1979.4310076 – ident: ref18 doi: 10.1109/TGRS.2019.2948659 – ident: ref6 doi: 10.1109/Multi-Temp.2019.8866958 – ident: ref38 doi: 10.1109/LGRS.2015.2478256 – volume: 10011 year: 2016 ident: ref11 article-title: Convolutional neural network features based change detection in satellite images publication-title: Proc. SPIE – ident: ref46 doi: 10.1109/TPAMI.1986.4767851 – ident: ref49 doi: 10.1016/j.rse.2019.111345 – ident: ref13 doi: 10.1016/j.isprsjprs.2016.02.013 – ident: ref15 doi: 10.1109/TGRS.2017.2707528 – ident: ref23 doi: 10.1109/IGARSS.2018.8519195 – ident: ref41 doi: 10.1117/12.2533812 – ident: ref35 doi: 10.1109/JSTARS.2017.2712119 – ident: ref34 doi: 10.1109/LGRS.2010.2102333 – ident: ref5 doi: 10.1016/S0378-1127(00)00594-6 – ident: ref20 doi: 10.1109/IGARSS.2016.7729290 – ident: ref4 doi: 10.1109/IGARSS.2009.5417370 – volume: 3 start-page: 1 issue: 1 year: 2009 ident: ref47 article-title: Study and comparison of various image edge detection techniques publication-title: Int. J. Image Process. – ident: ref26 doi: 10.1109/TII.2018.2873492 – ident: ref12 doi: 10.1109/TGRS.2018.2863224 – ident: ref21 doi: 10.1109/TGRS.2020.3001584 – ident: ref9 doi: 10.1109/TNNLS.2016.2636227 – ident: ref1 doi: 10.1016/j.biocon.2014.12.006 – ident: ref33 doi: 10.1109/LGRS.2017.2763182 – ident: ref39 doi: 10.1016/j.isprsjprs.2018.04.014 – ident: ref51 doi: 10.1109/36.843009 – ident: ref7 doi: 10.1117/12.2325149 – ident: ref50 doi: 10.1080/014311600210614 – ident: ref29 doi: 10.1109/MULTITEMP.2007.4293035 |
SSID | ssj0014517 |
Score | 2.5028768 |
Snippet | The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Change detection Convolutional autoencoder (CAE) Data models Decoding Deep learning deep learning (DL) Deforestation Detection Feature extraction Feature maps Image acquisition Landsat Landsat satellites Methods multitemporal analysis Remote sensing remote sensing (RS) Satellite imagery Semantics Task analysis Training Transfer learning unsupervised change detection (CD) unsupervised learning |
Title | Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features |
URI | https://ieeexplore.ieee.org/document/9669957 https://www.proquest.com/docview/2637441459 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB4BEtJRHG_d8lIKKkSWxImduEQ8hQTFHXuii2J73LDKIjah4NczdrwruEOILlHsyNE3sb_PngfAoSWObaXUccYUCRTNZCxRsNhV4S4LrbVKXezw7Z24HuU3D_xhAY7nsTCI6J3PcOgu_Vm-mejObZWdEDWXkheLsEjCrY_Vmp8Y5DwNodEiJhHBwglmmsiT-6vff0gJMkYCNSejzT-sQb6oyn8zsV9eLlfhdjaw3qvkcdi1aqhf_8nZ-N2Rr8HPwDOj094w1mEBmw1YeZd9cAOWvfennm7C31Ez7Z7crDFFE_UBB9E5tt5Nq4m8W0F0Nmlegp3W4_i0aycuB6bB58gH8ZJsD08jRys7ut-C0eXF_dl1HAouxJpkZBuLujRckUSjOU-4TO06syJVTOu0sElJH1GikRwFr0lV20SoUpoCDXGWzFgls21YaiYN_oIosblkrOA1s0WOiVIaU5UhZhZNKWo-gGQGQaVDNnJXFGNceVWSyMqhVjnUqoDaAI7mXZ76VBxfNd50KMwbBgAGsDfDuQo_67RiIiuIFeZc7nzeaxd-uHf3Oy97sNQ-d7hPXKRVB94I3wDA2NwE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RUNVyoBSoukDbHDhVzZI4sRMfEV_bwnJodytuUWyPL0VZxCY99NczdrwrKFXFLVFsxdGb2O_Z8wFwYIljWyl1nDFFAkUzGUsULHZVuMtCa61SFzs8vhKjaf7tml-vwJdlLAwieuczHLpLf5ZvZrpzW2WHRM2l5MULWKN1n7M-Wmt5ZpDzNARHi5hkBAtnmGkiDyfn33-QFmSMJGpOZps_WoV8WZUnc7FfYM7ewHgxtN6v5Newa9VQ__kra-Nzx74JG4FpRke9abyFFWy2YP1B_sEteOn9P_V8G35Om3l36-aNOZqoDzmITrD1jlpN5B0LouNZ8ztYan0TH3XtzGXBNHgX-TBeEu7haeSIZUf3OzA9O50cj-JQciHWJCTbWNSl4YpEGs16wuVq15kVqWJap4VNSvqIEo3kKHhNutomQpXSFGiItWTGKpm9g9Vm1uB7iBKbS8YKXjNb5JgopTFVGWJm0ZSi5gNIFhBUOuQjd2UxbiqvSxJZOdQqh1oVUBvA52WX2z4Zx_8abzsUlg0DAAPYX-Bchd91XjGRFcQLcy53_93rE7waTcaX1eXXq4s9eO3e0-_D7MNqe9fhB2ImrfroDfIeZR_fTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Change+Detection+Using+Convolutional-Autoencoder+Multiresolution+Features&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Bergamasco%2C+Luca&rft.au=Saha%2C+Sudipan&rft.au=Bovolo%2C+Francesca&rft.au=Bruzzone%2C+Lorenzo&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1109%2FTGRS.2022.3140404&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3140404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |