Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features

The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer le...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 19
Main Authors Bergamasco, Luca, Saha, Sudipan, Bovolo, Francesca, Bruzzone, Lorenzo
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer learning for CD by reusing DL models pretrained for other tasks. However, the performance of the transfer-learning-based models decreases as much as the target images differ from the ones used for training the model. To overcome this limit, we propose an unsupervised CD method that exploits multiresolution deep feature maps derived by a convolutional autoencoder (CAE). It automatically learns spatial features from the input during the training phase without requiring any labeled data. The proposed method processes the bitemporal images to obtain and compare multiresolution bitemporal feature maps. These feature maps are then analyzed by a feature-selection technique to select the most discriminant ones. Furthermore, an aggregated multiresolution difference image is computed and used for a detail-preserving multiscale CD. In the context of this CD approach, we propose two alternative strategies to retrieve multiscale reliability maps. We tested the proposed method on bitemporal multispectral images acquired by Landsat-5 and Landsat-8 representing burned areas and Sentinel-2 images representing deforested areas. Results confirm the effectiveness of the proposed CD technique.
AbstractList The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer learning for CD by reusing DL models pretrained for other tasks. However, the performance of the transfer-learning-based models decreases as much as the target images differ from the ones used for training the model. To overcome this limit, we propose an unsupervised CD method that exploits multiresolution deep feature maps derived by a convolutional autoencoder (CAE). It automatically learns spatial features from the input during the training phase without requiring any labeled data. The proposed method processes the bitemporal images to obtain and compare multiresolution bitemporal feature maps. These feature maps are then analyzed by a feature-selection technique to select the most discriminant ones. Furthermore, an aggregated multiresolution difference image is computed and used for a detail-preserving multiscale CD. In the context of this CD approach, we propose two alternative strategies to retrieve multiscale reliability maps. We tested the proposed method on bitemporal multispectral images acquired by Landsat-5 and Landsat-8 representing burned areas and Sentinel-2 images representing deforested areas. Results confirm the effectiveness of the proposed CD technique.
Author Bergamasco, Luca
Bruzzone, Lorenzo
Bovolo, Francesca
Saha, Sudipan
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0001-7815-9001
  surname: Bergamasco
  fullname: Bergamasco, Luca
  email: lbergamasco@fbk.eu
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
– sequence: 2
  givenname: Sudipan
  orcidid: 0000-0002-9440-0720
  surname: Saha
  fullname: Saha, Sudipan
  email: sudipan.saha@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Ottobrunn, Germany
– sequence: 3
  givenname: Francesca
  orcidid: 0000-0003-3104-7656
  surname: Bovolo
  fullname: Bovolo, Francesca
  email: bovolo@fbk.eu
  organization: Center of Digital Society, Fondazione Bruno Kessler, Trento, Italy
– sequence: 4
  givenname: Lorenzo
  orcidid: 0000-0002-6036-459X
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  email: lorenzo.bruzzone@unitn.it
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
BookMark eNp9UNFKwzAUDTLBbfoB4kvB586kTdLmcVQ3hYmgm68lTW5nRm1mkg78e1s2fPBB7sPl3nvO5ZwzQaPWtoDQNcEzQrC4Wy9f32YJTpJZSiju6wyNCWN5jDmlIzTGRPA4yUVygSbe7zAmlJFsjN43re_24A7Gg46KD9luIbqHACoY20Ybb9ptVNj2YJtu2MgmnnfBQqusBhc9d00wDvzpGi1Ahq6fL9F5LRsPV6c-RZvFw7p4jFcvy6divooVxUmIucw1qzgmWgPnJMMqrTmpEqVIVuNccJ6DFgw4k5SLGvMqFzoDnTKW6roS6RTdHv_unf3qwIdyZzvXq_RlwtOM0t7mgMqOKOWs9w7qUpkgB8HBSdOUBJdDiOUQYjmEWJ5C7JnkD3PvzKd03_9ybo4cAwC_-N6LECxLfwCkm4Cl
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs15071868
crossref_primary_10_1016_j_isprsjprs_2024_12_010
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_1109_TGRS_2022_3204834
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_1364_AO_479955
crossref_primary_10_1109_TGRS_2023_3314217
crossref_primary_10_1109_TGRS_2024_3432819
crossref_primary_10_1080_10589759_2025_2456673
crossref_primary_10_3390_rs16132355
crossref_primary_10_1109_TGRS_2022_3224293
crossref_primary_10_3390_rs16193719
crossref_primary_10_1016_j_displa_2024_102840
crossref_primary_10_1109_JSTARS_2024_3371015
crossref_primary_10_1109_TGRS_2022_3213925
crossref_primary_10_1109_JSTARS_2023_3327340
crossref_primary_10_1109_TGRS_2024_3438465
crossref_primary_10_1109_TGRS_2023_3235917
crossref_primary_10_1109_JSTARS_2022_3217038
crossref_primary_10_1109_TGRS_2024_3379431
crossref_primary_10_1109_JSTARS_2024_3361183
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_3390_atmos14121813
Cites_doi 10.1109/JSTARS.2019.2936771
10.1109/IGARSS.2019.8900173
10.1109/TGRS.2017.2739800
10.1109/LGRS.2008.2007429
10.1109/LGRS.2019.2896948
10.1080/01431161.2016.1171928
10.1109/TGRS.2007.895835
10.1016/S0303-2434(03)00010-2
10.1109/LGRS.2020.2990284
10.1109/TGRS.2018.2886643
10.1109/TGRS.2005.857987
10.1109/LGRS.2009.2026188
10.1109/TIP.2002.999678
10.1109/LGRS.2018.2868704
10.1109/LGRS.2017.2738149
10.1117/12.2031104
10.1109/JSTARS.2020.2982631
10.1109/TGRS.2018.2849692
10.1109/LGRS.2016.2601930
10.1007/978-3-642-21735-7_7
10.1109/TSMC.1979.4310076
10.1109/TGRS.2019.2948659
10.1109/Multi-Temp.2019.8866958
10.1109/LGRS.2015.2478256
10.1109/TPAMI.1986.4767851
10.1016/j.rse.2019.111345
10.1016/j.isprsjprs.2016.02.013
10.1109/TGRS.2017.2707528
10.1109/IGARSS.2018.8519195
10.1117/12.2533812
10.1109/JSTARS.2017.2712119
10.1109/LGRS.2010.2102333
10.1016/S0378-1127(00)00594-6
10.1109/IGARSS.2016.7729290
10.1109/IGARSS.2009.5417370
10.1109/TII.2018.2873492
10.1109/TGRS.2018.2863224
10.1109/TGRS.2020.3001584
10.1109/TNNLS.2016.2636227
10.1016/j.biocon.2014.12.006
10.1109/LGRS.2017.2763182
10.1016/j.isprsjprs.2018.04.014
10.1109/36.843009
10.1117/12.2325149
10.1080/014311600210614
10.1109/MULTITEMP.2007.4293035
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3140404
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 19
ExternalDocumentID 10_1109_TGRS_2022_3140404
9669957
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c402t-6a8d5b601dde66170c3f61b2cc17f089668ed95e65a469f06b89d7ed3553dfb93
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:22 EDT 2025
Tue Jul 01 01:34:34 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Aug 27 02:49:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-6a8d5b601dde66170c3f61b2cc17f089668ed95e65a469f06b89d7ed3553dfb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3104-7656
0000-0002-9440-0720
0000-0001-7815-9001
0000-0002-6036-459X
OpenAccessLink https://hdl.handle.net/11572/330111
PQID 2637441459
PQPubID 85465
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2022_3140404
ieee_primary_9669957
proquest_journals_2637441459
crossref_primary_10_1109_TGRS_2022_3140404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref10
ref17
ref16
ref19
ref18
Ioffe (ref44) 2015
ref51
ref50
ref46
ref48
ref42
ref41
ref43
Mengistu (ref2) 2007; 1
El Amin (ref11) 2016; 10011
ref49
Lyon (ref3) 1998; 64
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Maini (ref47) 2009; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Maas (ref45); 30
References_xml – ident: ref40
  doi: 10.1109/JSTARS.2019.2936771
– ident: ref17
  doi: 10.1109/IGARSS.2019.8900173
– ident: ref24
  doi: 10.1109/TGRS.2017.2739800
– ident: ref28
  doi: 10.1109/LGRS.2008.2007429
– ident: ref19
  doi: 10.1109/LGRS.2019.2896948
– ident: ref37
  doi: 10.1080/01431161.2016.1171928
– ident: ref43
  doi: 10.1109/TGRS.2007.895835
– volume: 30
  start-page: 3
  issue: 1
  volume-title: Proc. ICML
  ident: ref45
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref32
  doi: 10.1016/S0303-2434(03)00010-2
– year: 2015
  ident: ref44
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv:1502.03167
– ident: ref22
  doi: 10.1109/LGRS.2020.2990284
– ident: ref8
  doi: 10.1109/TGRS.2018.2886643
– ident: ref30
  doi: 10.1109/TGRS.2005.857987
– ident: ref31
  doi: 10.1109/LGRS.2009.2026188
– volume: 64
  start-page: 143
  issue: 2
  year: 1998
  ident: ref3
  article-title: A change detection experiment using vegetation indices
  publication-title: Photogramm. Eng. remote Sens.
– ident: ref52
  doi: 10.1109/TIP.2002.999678
– ident: ref16
  doi: 10.1109/LGRS.2018.2868704
– ident: ref10
  doi: 10.1109/LGRS.2017.2738149
– volume: 1
  start-page: 99
  issue: 5
  year: 2007
  ident: ref2
  article-title: Application of remote sensing and GIS inland use/land cover mapping and change detection in a part of south western Nigeria
  publication-title: Afr. J. Environ. Sci. Technol.
– ident: ref25
  doi: 10.1117/12.2031104
– ident: ref42
  doi: 10.1109/JSTARS.2020.2982631
– ident: ref14
  doi: 10.1109/TGRS.2018.2849692
– ident: ref27
  doi: 10.1109/LGRS.2016.2601930
– ident: ref36
  doi: 10.1007/978-3-642-21735-7_7
– ident: ref48
  doi: 10.1109/TSMC.1979.4310076
– ident: ref18
  doi: 10.1109/TGRS.2019.2948659
– ident: ref6
  doi: 10.1109/Multi-Temp.2019.8866958
– ident: ref38
  doi: 10.1109/LGRS.2015.2478256
– volume: 10011
  year: 2016
  ident: ref11
  article-title: Convolutional neural network features based change detection in satellite images
  publication-title: Proc. SPIE
– ident: ref46
  doi: 10.1109/TPAMI.1986.4767851
– ident: ref49
  doi: 10.1016/j.rse.2019.111345
– ident: ref13
  doi: 10.1016/j.isprsjprs.2016.02.013
– ident: ref15
  doi: 10.1109/TGRS.2017.2707528
– ident: ref23
  doi: 10.1109/IGARSS.2018.8519195
– ident: ref41
  doi: 10.1117/12.2533812
– ident: ref35
  doi: 10.1109/JSTARS.2017.2712119
– ident: ref34
  doi: 10.1109/LGRS.2010.2102333
– ident: ref5
  doi: 10.1016/S0378-1127(00)00594-6
– ident: ref20
  doi: 10.1109/IGARSS.2016.7729290
– ident: ref4
  doi: 10.1109/IGARSS.2009.5417370
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: ref47
  article-title: Study and comparison of various image edge detection techniques
  publication-title: Int. J. Image Process.
– ident: ref26
  doi: 10.1109/TII.2018.2873492
– ident: ref12
  doi: 10.1109/TGRS.2018.2863224
– ident: ref21
  doi: 10.1109/TGRS.2020.3001584
– ident: ref9
  doi: 10.1109/TNNLS.2016.2636227
– ident: ref1
  doi: 10.1016/j.biocon.2014.12.006
– ident: ref33
  doi: 10.1109/LGRS.2017.2763182
– ident: ref39
  doi: 10.1016/j.isprsjprs.2018.04.014
– ident: ref51
  doi: 10.1109/36.843009
– ident: ref7
  doi: 10.1117/12.2325149
– ident: ref50
  doi: 10.1080/014311600210614
– ident: ref29
  doi: 10.1109/MULTITEMP.2007.4293035
SSID ssj0014517
Score 2.5028768
Snippet The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Change detection
Convolutional autoencoder (CAE)
Data models
Decoding
Deep learning
deep learning (DL)
Deforestation
Detection
Feature extraction
Feature maps
Image acquisition
Landsat
Landsat satellites
Methods
multitemporal analysis
Remote sensing
remote sensing (RS)
Satellite imagery
Semantics
Task analysis
Training
Transfer learning
unsupervised change detection (CD)
unsupervised learning
Title Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features
URI https://ieeexplore.ieee.org/document/9669957
https://www.proquest.com/docview/2637441459
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB4BEtJRHG_d8lIKKkSWxImduEQ8hQTFHXuii2J73LDKIjah4NczdrwruEOILlHsyNE3sb_PngfAoSWObaXUccYUCRTNZCxRsNhV4S4LrbVKXezw7Z24HuU3D_xhAY7nsTCI6J3PcOgu_Vm-mejObZWdEDWXkheLsEjCrY_Vmp8Y5DwNodEiJhHBwglmmsiT-6vff0gJMkYCNSejzT-sQb6oyn8zsV9eLlfhdjaw3qvkcdi1aqhf_8nZ-N2Rr8HPwDOj094w1mEBmw1YeZd9cAOWvfennm7C31Ez7Z7crDFFE_UBB9E5tt5Nq4m8W0F0Nmlegp3W4_i0aycuB6bB58gH8ZJsD08jRys7ut-C0eXF_dl1HAouxJpkZBuLujRckUSjOU-4TO06syJVTOu0sElJH1GikRwFr0lV20SoUpoCDXGWzFgls21YaiYN_oIosblkrOA1s0WOiVIaU5UhZhZNKWo-gGQGQaVDNnJXFGNceVWSyMqhVjnUqoDaAI7mXZ76VBxfNd50KMwbBgAGsDfDuQo_67RiIiuIFeZc7nzeaxd-uHf3Oy97sNQ-d7hPXKRVB94I3wDA2NwE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RUNVyoBSoukDbHDhVzZI4sRMfEV_bwnJodytuUWyPL0VZxCY99NczdrwrKFXFLVFsxdGb2O_Z8wFwYIljWyl1nDFFAkUzGUsULHZVuMtCa61SFzs8vhKjaf7tml-vwJdlLAwieuczHLpLf5ZvZrpzW2WHRM2l5MULWKN1n7M-Wmt5ZpDzNARHi5hkBAtnmGkiDyfn33-QFmSMJGpOZps_WoV8WZUnc7FfYM7ewHgxtN6v5Newa9VQ__kra-Nzx74JG4FpRke9abyFFWy2YP1B_sEteOn9P_V8G35Om3l36-aNOZqoDzmITrD1jlpN5B0LouNZ8ztYan0TH3XtzGXBNHgX-TBeEu7haeSIZUf3OzA9O50cj-JQciHWJCTbWNSl4YpEGs16wuVq15kVqWJap4VNSvqIEo3kKHhNutomQpXSFGiItWTGKpm9g9Vm1uB7iBKbS8YKXjNb5JgopTFVGWJm0ZSi5gNIFhBUOuQjd2UxbiqvSxJZOdQqh1oVUBvA52WX2z4Zx_8abzsUlg0DAAPYX-Bchd91XjGRFcQLcy53_93rE7waTcaX1eXXq4s9eO3e0-_D7MNqe9fhB2ImrfroDfIeZR_fTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Change+Detection+Using+Convolutional-Autoencoder+Multiresolution+Features&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Bergamasco%2C+Luca&rft.au=Saha%2C+Sudipan&rft.au=Bovolo%2C+Francesca&rft.au=Bruzzone%2C+Lorenzo&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1109%2FTGRS.2022.3140404&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3140404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon