Information Source Detection in the SIR Model: A Sample-Path-Based Approach

This paper studies the problem of detecting the information source in a network in which the spread of information follows the popular Susceptible-Infected-Recovered (SIR) model. We assume all nodes in the network are in the susceptible state initially, except one single information source that is i...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on networking Vol. 24; no. 1; pp. 408 - 421
Main Authors Zhu, Kai, Ying, Lei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the problem of detecting the information source in a network in which the spread of information follows the popular Susceptible-Infected-Recovered (SIR) model. We assume all nodes in the network are in the susceptible state initially, except one single information source that is in the infected state. Susceptible nodes may then be infected by infected nodes, and infected nodes may recover and will not be infected again after recovery. Given a snapshot of the network, from which we know the graph topology and all infected nodes but cannot distinguish susceptible nodes and recovered nodes, the problem is to find the information source based on the snapshot and the network topology. We develop a sample-path-based approach where the estimator of the information source is chosen to be the root node associated with the sample path that most likely leads to the observed snapshot. We prove for infinite-trees, the estimator is a node that minimizes the maximum distance to the infected nodes. A reverse-infection algorithm is proposed to find such an estimator in general graphs. We prove that for g+1-regular trees such that gq > 1, where g+1 is the node degree and q is the infection probability, the estimator is within a constant distance from the actual source with a high probability, independent of the number of infected nodes and the time the snapshot is taken. Our simulation results show that for tree networks, the estimator produced by the reverse-infection algorithm is closer to the actual source than the one identified by the closeness centrality heuristic. We then further evaluate the performance of the reverse infection algorithm on several real-world networks.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2014.2364972