In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba

The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old S...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 38; p. E5327
Main Authors Legendre, Matthieu, Lartigue, Audrey, Bertaux, Lionel, Jeudy, Sandra, Bartoli, Julia, Lescot, Magali, Alempic, Jean-Marie, Ramus, Claire, Bruley, Christophe, Labadie, Karine, Shmakova, Lyubov, Rivkina, Elizaveta, Couté, Yohann, Abergel, Chantal, Claverie, Jean-Michel
Format Journal Article
LanguageEnglish
Published United States National Acad Sciences 22.09.2015
National Academy of Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum , a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming. Acanthamoeba species are infected by the largest known DNA viruses. These include icosahedral Mimiviruses, amphora-shaped Pandoraviruses, and Pithovirus sibericum , the latter one isolated from 30,000-y-old permafrost. Mollivirus sibericum , a fourth type of giant virus, was isolated from the same permafrost sample. Its approximately spherical virion (0.6-µm diameter) encloses a 651-kb GC-rich genome encoding 523 proteins of which 64% are ORFans; 16% have their closest homolog in Pandoraviruses and 10% in Acanthamoeba castellanii probably through horizontal gene transfer. The Mollivirus nucleocytoplasmic replication cycle was analyzed using a combination of “omic” approaches that revealed how the virus highjacks its host machinery to actively replicate. Surprisingly, the host’s ribosomal proteins are packaged in the virion. Metagenomic analysis of the permafrost sample uncovered the presence of both viruses, yet in very low amount. The fact that two different viruses retain their infectivity in prehistorical permafrost layers should be of concern in a context of global warming. Giant viruses’ diversity remains to be fully explored.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4586845
1M. Legendre and A.L. contributed equally to this work.
Edited by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved August 12, 2015 (received for review June 2, 2015)
Author contributions: Y.C., C.A., and J.-M.C. designed research; M. Legendre, A.L., L.B., S.J., J.B., M. Lescot, J.-M.A., C.R., Y.C., C.A., and J.-M.C. performed research; K.L. performed sequencing; A.L., C.R., C.B., K.L., L.S., E.R., and Y.C. contributed new reagents/analytic tools; M. Legendre, A.L., M. Lescot, Y.C., C.A., and J.-M.C. analyzed data; M. Legendre, C.A., and J.-M.C. wrote the paper.
2Present address: Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Unité Mixte de Recherche 7255 (Institut de Microbiologie de la Méditerranée, FR3479) Centre National de la Recherche Scientifique, Aix-Marseille Université, 13009 Marseille, France.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1510795112