Efficient Routing for Precedence-Constrained Package Delivery for Heterogeneous Vehicles

This paper studies the precedence-constrained task assignment problem for a team of heterogeneous vehicles to deliver packages to a set of dispersed customers subject to precedence constraints that specify which customers need to be visited before which other customers. A truck and a micro drone wit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 17; no. 1; pp. 248 - 260
Main Authors Bai, Xiaoshan, Cao, Ming, Yan, Weisheng, Ge, Shuzhi Sam
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the precedence-constrained task assignment problem for a team of heterogeneous vehicles to deliver packages to a set of dispersed customers subject to precedence constraints that specify which customers need to be visited before which other customers. A truck and a micro drone with complementary capabilities are employed where the truck is restricted to travel in a street network and the micro drone, restricted by its loading capacity and operation range, can fly from the truck to perform the last-mile package deliveries. The objective is to minimize the time to serve all the customers respecting every precedence constraint. The problem is shown to be NP-hard, and a lower bound on the optimal time to serve all the customers is constructed by using tools from graph theory. Then, integrating with a topological sorting technique, several heuristic task assignment algorithms are proposed to solve the task assignment problem. Numerical simulations show the superior performances of the proposed algorithms compared with popular genetic algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2019.2914113