THREE POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 31; no. 4; pp. 1337 - 1346
Main Authors ur Rehman, Mujeeb, Khan, Rahmat Ali, Asif, Naseer Ahmad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2011
National University of Sciences and Technology(NUST),Centre for Advanced Mathematics and Physics, Sector H-12 Islamabad, Pakistan%University of Malakand, Chakdara Dir(L), Khyber Pakhtunkhawa, Pakistan
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(11)60320-2

Cover

More Information
Summary:In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1 -β) + (1-α)(T βη) = 0 and c D δ 0+ , c D σ 0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results. Examples are also included to show the applicability of our results.
Bibliography:In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1 -β) + (1-α)(T βη) = 0 and c D δ 0+ , c D σ 0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results. Examples are also included to show the applicability of our results.
fractional differential equations; three point boundary conditions; existence and uniqueness results
42-1227/O
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(11)60320-2