GRADIENT ESTIMATES FOR POSITIVE SMOOTH f-HARMONIC FUNCTIONS

For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classical ones of Yau (i.e., when : is constant).

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 30; no. 5; pp. 1614 - 1618
Main Author 陈立 陈文艺
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2010
Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China%School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For Riemannian manifolds with a measure, we study the gradient estimates for positive smooth f-harmonic functions when the ∞-Bakry-Emery Ricci tensor and Ricci tensor are bounded from below, generalizing the classical ones of Yau (i.e., when : is constant).
Bibliography:gradient estimate; f-harmonic function; Bakry-Emery Ricci tensor
Bakry-Emery Ricci tensor
gradient estimate
42-1227/O
TP391.41
f-harmonic function
O174.3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(10)60154-3