A rotational ablation tool for calcified atherosclerotic plaque removal

Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring t...

Full description

Saved in:
Bibliographic Details
Published inBiomedical microdevices Vol. 13; no. 6; pp. 963 - 971
Main Authors Kim, Min-Hyeng, Kim, Hyung-Jung, Kim, Nicholas N., Yoon, Hae-Sung, Ahn, Sung-Hoon
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.12.2011
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1387-2176
1572-8781
DOI:10.1007/s10544-011-9566-y