Impacts of Vertically Stacked Monolithic 3D-IC Process on Characteristics of Underlying Thin-Film Transistor

In this work, the high-performance junctionless-mode (JL) and low-power inversion-mode (IM) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with nanosheet channels (less than 10-nm in thickness) are vertically integrated in monolithic three-dimensional integrated circuit (3D-IC) struc...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of the Electron Devices Society Vol. 8; pp. 724 - 730
Main Authors Ma, William Cheng-Yu, Huang, Yan-Jia, Chen, Po-Jen, Jhu, Jhe-Wei, Chang, Yan-Shiuan, Chang, Ting-Hsuan
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, the high-performance junctionless-mode (JL) and low-power inversion-mode (IM) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with nanosheet channels (less than 10-nm in thickness) are vertically integrated in monolithic three-dimensional integrated circuit (3D-IC) structure. Both JL and IM TFTs can exhibit high on/off current ratio over 10 7 to demonstrate their performance. The JL TFT has much higher on-state current ~ 24 times than it of the IM TFT. And the IM-TFT has much lower SS ~ 0.104 V/decade and off-current ~ 0.04 times than them of the JL TFT. However, the fabrication of the top-devices (JL TFTs) would degrade the performance of underlying-devices (IM TFTs), resulting in the threshold voltage shift of the IM TFTs from 0.61 to 2.17 V, SS increase from 0.104 to 0.218 V/decade and on-state current degradation from 16 to 3 mA. In order to further understand the reasons, the IM TFT with top-device removal process is also fabricated, which exhibits a partial recovery in performance. The results indicate the presence and fabrication process of the top-device would lead to the defect generation in the underlying-device. The results provide a new consideration for monolithic 3D-IC manufacturing technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-6734
2168-6734
DOI:10.1109/JEDS.2020.3009350