Optimal protection against Salmonella infection requires noncirculating memory

While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella infection. Using an epitope-tagged vaccine strain of Salmonella, we found that effective protection correlated with expanded Salmonella-specific...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 41; pp. 10416 - 10421
Main Authors Benoun, Joseph M., Peres, Newton G., Wang, Nancy, Pham, Oanh H., Rudisill, Victoria L., Fogassy, Zachary N., Whitney, Paul G., Fernandez-Ruiz, Daniel, Gebhardt, Thomas, Pham, Quynh-Mai, Puddington, Lynn, Bedoui, Sammy, Strugnell, Richard A., McSorley, Stephen J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella infection. Using an epitope-tagged vaccine strain of Salmonella, we found that effective protection correlated with expanded Salmonella-specific memory CD4 T cells in circulation and nonlymphoid tissues. However, naive mice that previously shared a blood supply with vaccinated partners lacked T cell memory with characteristics of tissue residence and did not acquire robust protective immunity. Using a YFP–IFN-γ reporter system, we identified Th1 cells in the liver of immunized mice that displayed markers of tissue residence, including P2X7, ARTC2, LFA-1, and CD101. Adoptive transfer of liver memory cells after ARTC2 blockade increased protection against highly virulent bacteria. Taken together, these data demonstrate that noncirculating memory Th1 cells are a vital component of immunity to Salmonella infection and should be the focus of vaccine strategies.
AbstractList Effective vaccination against Salmonella infection requires the generation of memory T cells that can be reactivated upon exposure to bacteria in a natural setting. It is unclear whether immunity requires memory T cells that continuously patrol blood, lymphatics, and tissues, whether noncirculating T cells are important, or both. We demonstrate the generation of circulating and noncirculating memory pools after immunization. However, naive mice that previously shared a blood supply with vaccinated partners received recirculating memory T cells, but did not have T cell memory with characteristics of tissue residence, resulting in a failure to acquire robust protective immunity. Thus, noncirculating tissue-resident memory T cells are vital for effective protection against Salmonella . While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella infection. Using an epitope-tagged vaccine strain of Salmonella , we found that effective protection correlated with expanded Salmonella -specific memory CD4 T cells in circulation and nonlymphoid tissues. However, naive mice that previously shared a blood supply with vaccinated partners lacked T cell memory with characteristics of tissue residence and did not acquire robust protective immunity. Using a YFP–IFN-γ reporter system, we identified Th1 cells in the liver of immunized mice that displayed markers of tissue residence, including P2X7, ARTC2, LFA-1, and CD101. Adoptive transfer of liver memory cells after ARTC2 blockade increased protection against highly virulent bacteria. Taken together, these data demonstrate that noncirculating memory Th1 cells are a vital component of immunity to Salmonella infection and should be the focus of vaccine strategies.
While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella infection. Using an epitope-tagged vaccine strain of Salmonella, we found that effective protection correlated with expanded Salmonella-specific memory CD4 T cells in circulation and nonlymphoid tissues. However, naive mice that previously shared a blood supply with vaccinated partners lacked T cell memory with characteristics of tissue residence and did not acquire robust protective immunity. Using a YFP–IFN-γ reporter system, we identified Th1 cells in the liver of immunized mice that displayed markers of tissue residence, including P2X7, ARTC2, LFA-1, and CD101. Adoptive transfer of liver memory cells after ARTC2 blockade increased protection against highly virulent bacteria. Taken together, these data demonstrate that noncirculating memory Th1 cells are a vital component of immunity to Salmonella infection and should be the focus of vaccine strategies.
While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against infection. Using an epitope-tagged vaccine strain of , we found that effective protection correlated with expanded -specific memory CD4 T cells in circulation and nonlymphoid tissues. However, naive mice that previously shared a blood supply with vaccinated partners lacked T cell memory with characteristics of tissue residence and did not acquire robust protective immunity. Using a YFP-IFN-γ reporter system, we identified Th1 cells in the liver of immunized mice that displayed markers of tissue residence, including P2X7, ARTC2, LFA-1, and CD101. Adoptive transfer of liver memory cells after ARTC2 blockade increased protection against highly virulent bacteria. Taken together, these data demonstrate that noncirculating memory Th1 cells are a vital component of immunity to infection and should be the focus of vaccine strategies.
Significance Effective vaccination against Salmonella infection requires the generation of memory T cells that can be reactivated upon exposure to bacteria in a natural setting. It is unclear whether immunity requires memory T cells that continuously patrol blood, lymphatics, and tissues, whether noncirculating T cells are important, or both. We demonstrate the generation of circulating and noncirculating memory pools after immunization. However, naive mice that previously shared a blood supply with vaccinated partners received recirculating memory T cells, but did not have T cell memory with characteristics of tissue residence, resulting in a failure to acquire robust protective immunity. Thus, noncirculating tissue-resident memory T cells are vital for effective protection against Salmonella . While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella infection. Using an epitope-tagged vaccine strain of Salmonella , we found that effective protection correlated with expanded Salmonella -specific memory CD4 T cells in circulation and nonlymphoid tissues. However, naive mice that previously shared a blood supply with vaccinated partners lacked T cell memory with characteristics of tissue residence and did not acquire robust protective immunity. Using a YFP–IFN-γ reporter system, we identified Th1 cells in the liver of immunized mice that displayed markers of tissue residence, including P2X7, ARTC2, LFA-1, and CD101. Adoptive transfer of liver memory cells after ARTC2 blockade increased protection against highly virulent bacteria. Taken together, these data demonstrate that noncirculating memory Th1 cells are a vital component of immunity to Salmonella infection and should be the focus of vaccine strategies.
Author Pham, Oanh H.
McSorley, Stephen J.
Pham, Quynh-Mai
Benoun, Joseph M.
Peres, Newton G.
Wang, Nancy
Rudisill, Victoria L.
Bedoui, Sammy
Whitney, Paul G.
Fernandez-Ruiz, Daniel
Strugnell, Richard A.
Fogassy, Zachary N.
Puddington, Lynn
Gebhardt, Thomas
Author_xml – sequence: 1
  givenname: Joseph M.
  surname: Benoun
  fullname: Benoun, Joseph M.
  organization: Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
– sequence: 2
  givenname: Newton G.
  surname: Peres
  fullname: Peres, Newton G.
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 3
  givenname: Nancy
  surname: Wang
  fullname: Wang, Nancy
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 4
  givenname: Oanh H.
  surname: Pham
  fullname: Pham, Oanh H.
  organization: Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
– sequence: 5
  givenname: Victoria L.
  surname: Rudisill
  fullname: Rudisill, Victoria L.
  organization: Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
– sequence: 6
  givenname: Zachary N.
  surname: Fogassy
  fullname: Fogassy, Zachary N.
  organization: Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
– sequence: 7
  givenname: Paul G.
  surname: Whitney
  fullname: Whitney, Paul G.
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 8
  givenname: Daniel
  surname: Fernandez-Ruiz
  fullname: Fernandez-Ruiz, Daniel
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 9
  givenname: Thomas
  surname: Gebhardt
  fullname: Gebhardt, Thomas
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 10
  givenname: Quynh-Mai
  surname: Pham
  fullname: Pham, Quynh-Mai
  organization: Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
– sequence: 11
  givenname: Lynn
  surname: Puddington
  fullname: Puddington, Lynn
  organization: Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
– sequence: 12
  givenname: Sammy
  surname: Bedoui
  fullname: Bedoui, Sammy
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 13
  givenname: Richard A.
  surname: Strugnell
  fullname: Strugnell, Richard A.
  organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 14
  givenname: Stephen J.
  surname: McSorley
  fullname: McSorley, Stephen J.
  organization: Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30254173$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1v1DAQxS1URLeFMydQJC5c0s7YjhNfkKqKL6miB-BsOY6zeJXYqe0g9b_Hq12Wj9Mc3s9v5vldkDMfvCXkJcIVQsuuF6_TFXbQMSYRmydkgyCxFlzCGdkA0LbuOOXn5CKlHQDIpoNn5JwBbTi2bEO-3C_ZzXqqlhiyNdkFX-mtdj7l6que5rJumnTl_HgUo31YXbSpKpcYF8066ez8tprtHOLjc_J01FOyL47zknz_8P7b7af67v7j59ubu9pwoLnGse96aEAKClRQTeUwUuhBMpSj4Ea3Zhg0RzkMXS8byoylYz8wKzVo5IZdkncH32XtZzsY63PUk1piyRIfVdBO_at490Ntw08lsGuR02Lw9mgQw8NqU1azS2af1duwJkURqUAUDS_om__QXVijL_EKVX6ylYKzQl0fKBNDStGOp2MQ1L4rte9K_emqvHj9d4YT_7ucArw6ALuUQzzpVDSMomTsF34ZnWc
CitedBy_id crossref_primary_10_1016_j_immuni_2021_03_006
crossref_primary_10_1016_j_micpath_2020_104352
crossref_primary_10_1637_aviandiseases_D_23_99988
crossref_primary_10_1371_journal_ppat_1010004
crossref_primary_10_4049_jimmunol_2300017
crossref_primary_10_1016_j_isci_2020_101854
crossref_primary_10_1038_s41586_023_06409_6
crossref_primary_10_1073_pnas_2214699120
crossref_primary_10_3389_fimmu_2020_603089
crossref_primary_10_1128_IAI_00026_20
crossref_primary_10_3390_pathogens8030147
crossref_primary_10_1093_oxfimm_iqae006
crossref_primary_10_1128_IAI_00588_19
crossref_primary_10_3390_microorganisms9040770
crossref_primary_10_1016_j_vaccine_2022_12_047
crossref_primary_10_3390_ijms21176144
crossref_primary_10_1016_j_vaccine_2023_09_011
crossref_primary_10_1126_sciimmunol_aas9673
crossref_primary_10_3389_fimmu_2021_693055
crossref_primary_10_1161_HYPERTENSIONAHA_118_11782
crossref_primary_10_1371_journal_ppat_1011666
crossref_primary_10_1038_s41467_024_47190_y
crossref_primary_10_1073_pnas_2104407118
crossref_primary_10_1093_infdis_jiae304
crossref_primary_10_3389_fphar_2022_832245
crossref_primary_10_3389_fimmu_2020_01786
crossref_primary_10_3389_fimmu_2021_637809
crossref_primary_10_1016_j_it_2020_11_005
crossref_primary_10_1016_j_isci_2022_104632
crossref_primary_10_1016_j_immuni_2020_07_004
crossref_primary_10_3389_fimmu_2023_1208848
crossref_primary_10_1007_s11240_023_02539_x
crossref_primary_10_1038_s41385_020_0299_1
crossref_primary_10_1038_s41385_019_0218_5
crossref_primary_10_1111_imm_13143
crossref_primary_10_1084_jem_20181365
crossref_primary_10_1016_j_celrep_2023_113323
crossref_primary_10_3390_vaccines11101562
Cites_doi 10.4049/jimmunol.145.4.1265
10.1111/j.1600-065X.2010.00999.x
10.1016/j.immuni.2009.11.007
10.1056/NEJM200104263441701
10.1126/science.1257530
10.1016/j.immuni.2016.08.011
10.2217/fmb.15.93
10.1073/pnas.1111413109
10.1038/mi.2011.2
10.1016/j.immuni.2014.12.007
10.4049/jimmunol.1102243
10.4049/jimmunol.175.7.4603
10.1128/mBio.01520-16
10.1189/jlb.0713407
10.1084/jem.139.5.1189
10.1038/nrmicro3428
10.4049/jimmunol.178.10.6200
10.1128/IAI.68.6.3344-3348.2000
10.3389/fimmu.2018.01580
10.1093/infdis/150.3.425
10.1111/imr.12650
10.4049/jimmunol.0900382
10.1016/j.chom.2016.10.007
10.1126/science.aaa8205
10.1016/j.micinf.2010.11.004
10.1128/mBio.01421-15
10.4049/jimmunol.1201413
10.1128/IAI.70.1.199-203.2002
10.1128/iai.60.10.3994-4002.1992
10.4049/jimmunol.156.9.3321
10.1038/cti.2016.84
10.1128/IAI.69.7.4618-4626.2001
10.4049/jimmunol.1400019
10.1371/journal.ppat.1002499
10.1038/ni.1715
10.1038/nri3858
10.1016/j.vaccine.2006.03.039
10.1371/journal.ppat.1002966
10.4049/jimmunol.0902871
10.1016/j.chom.2012.10.018
10.1097/QCO.0b013e32835fb829
10.4049/jimmunol.148.6.1604
10.4049/jimmunol.172.11.6884
10.4049/jimmunol.1601357
10.1016/j.immuni.2013.12.013
10.1128/IAI.68.1.46-53.2000
10.1128/iai.61.9.3981-3984.1993
10.1111/imr.12184
10.1016/j.immuni.2007.07.007
10.1002/eji.201444540
10.1073/pnas.1222047110
10.1056/NEJMra020201
10.1038/ni.2680
10.1016/j.cell.2015.03.031
10.1016/S1074-7613(02)00289-3
10.1038/nprot.2014.005
10.4049/jimmunol.174.5.2892
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 9, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 9, 2018
– notice: 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1808339115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10421
ExternalDocumentID 10_1073_pnas_1808339115
30254173
26532193
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI139410
– fundername: NIAID NIH HHS
  grantid: T32 AI060555
– fundername: NIAID NIH HHS
  grantid: P01 AI056172
– fundername: NIAID NIH HHS
  grantid: R01 AI103422
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI103422
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI060555
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI139410
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI056172
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c402t-1fb8b0509620262a29df20b09319f64ca7cdda419dd8b9523ce2fbd3e9a0a14c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:59:04 EDT 2024
Tue Aug 27 04:16:02 EDT 2024
Thu Oct 10 18:47:01 EDT 2024
Fri Aug 23 01:45:47 EDT 2024
Sat Sep 28 08:32:17 EDT 2024
Fri Feb 02 07:49:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Salmonella infection
CD4 T cell
vaccines
tissue-resident memory
protective immunity
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-1fb8b0509620262a29df20b09319f64ca7cdda419dd8b9523ce2fbd3e9a0a14c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1J.M.B., N.G.P., N.W., S.B., R.A.S., and S.J.M. contributed equally to this work.
Edited by Harvey Cantor, Dana-Farber Cancer Institute, Boston, MA, and approved August 27, 2018 (received for review May 15, 2018)
Author contributions: J.M.B., N.G.P., N.W., T.G., L.P., S.B., R.A.S., and S.J.M. designed research; J.M.B., N.G.P., N.W., O.H.P., V.L.R., Z.N.F., P.G.W., D.F.-R., Q.-M.P., L.P., and S.J.M. performed research; J.M.B., N.G.P., N.W., O.H.P., V.L.R., Z.N.F., P.G.W., D.F.-R., T.G., Q.-M.P., L.P., S.B., R.A.S., and S.J.M. analyzed data; and J.M.B., N.G.P., N.W., S.B., R.A.S., and S.J.M. wrote the paper.
ORCID 0000-0001-5979-4974
0000-0002-6363-3222
PMID 30254173
PQID 2130279643
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6187142
proquest_miscellaneous_2112611654
proquest_journals_2130279643
crossref_primary_10_1073_pnas_1808339115
pubmed_primary_30254173
jstor_primary_26532193
PublicationCentury 2000
PublicationDate 2018-10-09
PublicationDateYYYYMMDD 2018-10-09
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
Rissiek B (e_1_3_3_38_2) 2015; 384
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Nauciel C (e_1_3_3_7_2) 1990; 145
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
Hess J (e_1_3_3_8_2) 1996; 156
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_49_2
Donskoy E (e_1_3_3_58_2) 1992; 148
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – volume: 145
  start-page: 1265
  year: 1990
  ident: e_1_3_3_7_2
  article-title: Role of CD4+ T cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.145.4.1265
  contributor:
    fullname: Nauciel C
– ident: e_1_3_3_48_2
  doi: 10.1111/j.1600-065X.2010.00999.x
– ident: e_1_3_3_19_2
  doi: 10.1016/j.immuni.2009.11.007
– ident: e_1_3_3_43_2
  doi: 10.1056/NEJM200104263441701
– ident: e_1_3_3_30_2
  doi: 10.1126/science.1257530
– ident: e_1_3_3_34_2
  doi: 10.1016/j.immuni.2016.08.011
– ident: e_1_3_3_57_2
  doi: 10.2217/fmb.15.93
– ident: e_1_3_3_53_2
  doi: 10.1073/pnas.1111413109
– ident: e_1_3_3_4_2
  doi: 10.1038/mi.2011.2
– ident: e_1_3_3_21_2
  doi: 10.1016/j.immuni.2014.12.007
– ident: e_1_3_3_28_2
  doi: 10.4049/jimmunol.1102243
– ident: e_1_3_3_51_2
  doi: 10.4049/jimmunol.175.7.4603
– ident: e_1_3_3_41_2
  doi: 10.1128/mBio.01520-16
– ident: e_1_3_3_39_2
  doi: 10.1189/jlb.0713407
– ident: e_1_3_3_31_2
  doi: 10.1084/jem.139.5.1189
– ident: e_1_3_3_3_2
  doi: 10.1038/nrmicro3428
– ident: e_1_3_3_11_2
  doi: 10.4049/jimmunol.178.10.6200
– ident: e_1_3_3_9_2
  doi: 10.1128/IAI.68.6.3344-3348.2000
– ident: e_1_3_3_40_2
  doi: 10.3389/fimmu.2018.01580
– ident: e_1_3_3_18_2
  doi: 10.1093/infdis/150.3.425
– ident: e_1_3_3_49_2
  doi: 10.1111/imr.12650
– ident: e_1_3_3_47_2
  doi: 10.4049/jimmunol.0900382
– ident: e_1_3_3_14_2
  doi: 10.1016/j.chom.2016.10.007
– ident: e_1_3_3_29_2
  doi: 10.1126/science.aaa8205
– ident: e_1_3_3_17_2
  doi: 10.1016/j.micinf.2010.11.004
– ident: e_1_3_3_55_2
  doi: 10.1128/mBio.01421-15
– ident: e_1_3_3_52_2
  doi: 10.4049/jimmunol.1201413
– ident: e_1_3_3_24_2
  doi: 10.1128/IAI.70.1.199-203.2002
– ident: e_1_3_3_56_2
  doi: 10.1128/iai.60.10.3994-4002.1992
– volume: 156
  start-page: 3321
  year: 1996
  ident: e_1_3_3_8_2
  article-title: Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: Major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location
  publication-title: J Immunol
  doi: 10.4049/jimmunol.156.9.3321
  contributor:
    fullname: Hess J
– ident: e_1_3_3_37_2
  doi: 10.1038/cti.2016.84
– ident: e_1_3_3_44_2
  doi: 10.1128/IAI.69.7.4618-4626.2001
– ident: e_1_3_3_50_2
  doi: 10.4049/jimmunol.1400019
– ident: e_1_3_3_26_2
  doi: 10.1371/journal.ppat.1002499
– ident: e_1_3_3_35_2
  doi: 10.1038/ni.1715
– ident: e_1_3_3_1_2
  doi: 10.1038/nri3858
– ident: e_1_3_3_6_2
  doi: 10.1016/j.vaccine.2006.03.039
– ident: e_1_3_3_54_2
  doi: 10.1371/journal.ppat.1002966
– ident: e_1_3_3_15_2
  doi: 10.4049/jimmunol.0902871
– ident: e_1_3_3_12_2
  doi: 10.1016/j.chom.2012.10.018
– ident: e_1_3_3_42_2
  doi: 10.1097/QCO.0b013e32835fb829
– volume: 148
  start-page: 1604
  year: 1992
  ident: e_1_3_3_58_2
  article-title: Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.148.6.1604
  contributor:
    fullname: Donskoy E
– ident: e_1_3_3_25_2
  doi: 10.4049/jimmunol.172.11.6884
– volume: 384
  start-page: 107
  year: 2015
  ident: e_1_3_3_38_2
  article-title: ADP-ribosylation of P2X7: A matter of life and death for regulatory T cells and natural killer T cells
  publication-title: Curr Top Microbiol Immunol
  contributor:
    fullname: Rissiek B
– ident: e_1_3_3_32_2
  doi: 10.4049/jimmunol.1601357
– ident: e_1_3_3_27_2
  doi: 10.1016/j.immuni.2013.12.013
– ident: e_1_3_3_10_2
  doi: 10.1128/IAI.68.1.46-53.2000
– ident: e_1_3_3_16_2
  doi: 10.1128/iai.61.9.3981-3984.1993
– ident: e_1_3_3_5_2
  doi: 10.1111/imr.12184
– ident: e_1_3_3_23_2
  doi: 10.1016/j.immuni.2007.07.007
– ident: e_1_3_3_13_2
  doi: 10.1002/eji.201444540
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.1222047110
– ident: e_1_3_3_2_2
  doi: 10.1056/NEJMra020201
– ident: e_1_3_3_20_2
  doi: 10.1038/ni.2680
– ident: e_1_3_3_22_2
  doi: 10.1016/j.cell.2015.03.031
– ident: e_1_3_3_45_2
  doi: 10.1016/S1074-7613(02)00289-3
– ident: e_1_3_3_33_2
  doi: 10.1038/nprot.2014.005
– ident: e_1_3_3_46_2
  doi: 10.4049/jimmunol.174.5.2892
SSID ssj0009580
Score 2.4902442
Snippet While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella...
While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against infection....
Significance Effective vaccination against Salmonella infection requires the generation of memory T cells that can be reactivated upon exposure to bacteria in...
Effective vaccination against Salmonella infection requires the generation of memory T cells that can be reactivated upon exposure to bacteria in a natural...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10416
SubjectTerms Adoptive transfer
Animal tissues
Animals
Bacteria
Biological Sciences
Blood circulation
CD4 antigen
Cells
Cells, Cultured
Computer memory
Epitopes
Female
Hepatocytes
Immunity
Immunization
Immunologic Memory - immunology
Immunological memory
Infections
LFA-1 antigen
Liver
Liver - immunology
Liver - microbiology
Lymphocytes
Lymphocytes T
Memory
Memory cells
Mice
Mice, Inbred C57BL
Salmonella
Salmonella Infections - immunology
Salmonella Infections - microbiology
Salmonella Infections - prevention & control
Salmonella typhimurium - immunology
Studies
T-Lymphocytes - immunology
T-Lymphocytes - microbiology
Th1 Cells - immunology
Th1 Cells - microbiology
Vaccines
γ-Interferon
Title Optimal protection against Salmonella infection requires noncirculating memory
URI https://www.jstor.org/stable/26532193
https://www.ncbi.nlm.nih.gov/pubmed/30254173
https://www.proquest.com/docview/2130279643
https://search.proquest.com/docview/2112611654
https://pubmed.ncbi.nlm.nih.gov/PMC6187142
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6oJy_ibt2o4EEPnWmWNu1RRHHBBVTwVtIk1QEnDjPjwX_vS7roiCcvvSRNy1uS75EvXwAORYVONlkciTTVEVfaRJIoHuFKWFYxkYnwOrM3t-nFE796Tp7nIGnPwnjSvioHPfs27NnBq-dWjoaq3_LE-vc3pylBmM9pfx7mMUDbEr1T2s3qcycUp19OeavnI1h_ZOWkRzJEHQxz3F1aw9xhcCLYzKpUExP_gpy_mZM_lqLzZVhqMGR4Uv_rCswZuworTZZOwqNGSvp4DW7vcEYYYt9GjgGdEMoXOUBMGD7INwxBR34KW0aWDcfGMYNxEPtu1WCs_OVe9iUcOkLu5zo8nZ89nl5EzQ0KkcK6cBqRqsxKr_BCsdaikua6onEZ55h4VcqVFEpryUmudVbmWJMqQ6tSM5PLWBKu2AYs4PfMFoSKxpogHBNMpjzBJxOyElmepRVjhIkAjloLFqNaKKPwG9yCFc7uxbfdA9jwFu760TRhOHOyAHZbkxdNKk0K6rdWnWxYAAddMyaB29mQ1rx_uD4EK0F3MCuAzdpD3eCtiwMQM77rOjiB7dkWjDsvtN3E2fa_39yBRQRYtX5uvgsL0_GH2UMQMy33Eb5fXu_70P0CFzvxiA
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALUKAlUCBIHMoh2fgjcXJEFdUC3QWJFvUWObZTVnTd1X4c4NczduLAVlzgkosnjqLnGc_Ib54BXosWQTZlloii0AlX2iSSKJ7gTti0GZG58Dqzk2kxPucfLvKLHchDL4wn7atmltqreWpn3zy3cjFXo8ATG32eHBcE03xOR7fgNvprxkORPmjtll3nCcUAzCkPij6CjRZWrlJSYt7B0MvdtTXMtYMTwbb2pY6a-Lek8yZ38o_N6OQ-fA2_0XFQvqebdZOqnzcUHv_5Px_AvT49jd92w3uwY-xD2OsDwCo-6lWq3zyC6ScMNnO07ZUeEN9YXsoZppvxF3mFq9vxquJA9rLx0jjSMU5ir62aLZW_N8xexnPH9f3xGM5P3p0dj5P-coZEYcm5TkjblI0Xj6FYxlFJK93SrMkq9Om24EoKpbXkpNK6bCosd5WhbaOZqWQmCVdsH3bxe-YJxIpmmmCmJ5gseI5PJmQryqosWsYIExEcBWjqRafBUfuzc8FqB2j9G9AI9j10gx0tcoZBmUVwGLCsey9d1dSf2jpFsgheDcPoX-7QRFpzvXE2BItM1_MVwUEH_TB5WDsRiK1FMRg47e7tEYTaa3j30D797zdfwp3x2eS0Pn0__fgM7mIe18n0Voewu15uzHPMldbNC-8ZvwBtkhKR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXSoGWlAJB4lAOefixdnJEhVV5dKkElSoukR9JWdF1V_s4wK9n7DzoVpx6ycUTR9HnGc_In78BeCMbBLku8kQKYRNubJ0oYniCO6FucqJGMujMnkzE8Rn_dD46v9bqK5D2jZ6m7nKWuunPwK2cz0zW88Sy05MjQTDN5zSb2ya7C_fQZ3PRF-qD3m7R3j6hGIQ55b2qj2TZ3KllSgrMPRh6um9dw_yVcCLZxt7U0hP_l3je5E9e25DG2_Cj_5WWh_IrXa90av7cUHm81b8-goddmhq_a0124E7tHsNOFwiW8WGnVv32CUy-YtCZoW2n-IA4x-pCTTHtjL-pS1zlnl8V96QvFy9qTz7GSdyVM9OFCf3D3EU885zf30_hbPzh-9Fx0jVpSAyWnquENLrQQUSGYjlHFS1tQ3Odl-jbjeBGSWOt4qS0ttAllr2mpo22rC5Vrgg3bBe28Hv1M4gNzS3BjE8yJfgIn0yqRhZlIRrGCJMRHPbwVPNWi6MKZ-iSVR7U6h-oEewG-AY7KkYMgzOL4KDHs-q8dVnRcHrrlckieD0Mo5_5wxPl6qu1tyFYbPq7XxHstfAPk_frJwK5sTAGA6_hvTmCcAct7w7e_Vu_-Qrun74fV18-Tj4_hweYzrVqveUBbK0W6_oFpkwr_TI4x18NaBUR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+protection+against+Salmonella+infection+requires+noncirculating+memory&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Benoun%2C+Joseph+M.&rft.au=Peres%2C+Newton+G.&rft.au=Wang%2C+Nancy&rft.au=Pham%2C+Oanh+H.&rft.date=2018-10-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=41&rft.spage=10416&rft.epage=10421&rft_id=info:doi/10.1073%2Fpnas.1808339115&rft.externalDocID=26532193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon