Investigation on a hydrogel based passive thermal management system for lithium ion batteries

An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management s...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 68; pp. 854 - 861
Main Authors Zhang, Sijie, Zhao, Rui, Liu, Jie, Gu, Junjie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.04.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. •A hydrogel thermal management system (TMS) is proposed for Li-ion battery.•It is found that the heat from internal resistance predominates at high discharge rate.•Effectiveness of hydrogel in controlling cell temperature is proved.•Battery equipped with hydrogel TMS is safer at continuous high rate cycle test.•The capacity fading rate of battery pack decreases when hydrogel TMS is implemented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0360-5442
DOI:10.1016/j.energy.2014.03.012