Characterization and Photocatalytic Kinetics of the ZnO Powder Prepared Using a Polyol Process
Crystalline ZnO photocatalytic nanoparticles were prepared by calcining the polyol-derived solid precursor in air at T ≥ 400°C for 3 h. The polyol-derived solid precursor was prepared by isothermally treating the ethylene glycol solution of zinc nitrate at 160°C for 8 h. The resultant suspension was...
Saved in:
Published in | Particulate science and technology Vol. 31; no. 5; pp. 482 - 487 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
03.09.2013
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Crystalline ZnO photocatalytic nanoparticles were prepared by calcining the polyol-derived solid precursor in air at T ≥ 400°C for 3 h. The polyol-derived solid precursor was prepared by isothermally treating the ethylene glycol solution of zinc nitrate at 160°C for 8 h. The resultant suspension was filtered, washed, dried and calcined to form the required oxides. The photocatalytic ability of the ZnO particles was investigated by measuring the ability of the calcined ZnO particles to photocatalytically decompose the methylene blue (MB) in water, under 365 nm UV light irradiation. The ZnO particles calcined at 400°C ≤T ≤ 700°C exhibited better photocatalytic abilities than the P25. The photocatalytic kinetics for the MB decomposition reaction were investigated by estimating the corresponding specific reaction rates, such as
(based on mass of the catalyst used) and
(based on surface area of the catalyst used). It was found that the specific surface area and the crystallinity of ZnO particles strongly affected the performance of ZnO photocatalysts. The ZnO particles calcined at 500°C
had an optimized combination of the crystallinity and the specific surface area, and gave the best photocatalytic ability per unit particle mass. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0272-6351 1548-0046 |
DOI: | 10.1080/02726351.2013.773390 |