Decoding of trellis-encoded signals in the presence of intersymbol interference and noise

A novel receiver for data-transmission systems using trellis-coded modulation is investigated. It comprises a whitened-matched filter and a trellis decoder which combines the previously separated functions of equalization and trellis-coded modulation (TCM) decoding. TCM encoder, transmission channel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 37; no. 7; pp. 669 - 676
Main Authors Chevillat, P.R., Eleftheriou, E.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.1989
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel receiver for data-transmission systems using trellis-coded modulation is investigated. It comprises a whitened-matched filter and a trellis decoder which combines the previously separated functions of equalization and trellis-coded modulation (TCM) decoding. TCM encoder, transmission channel, and whitened-matched filter are modeled by a single finite-state machine with combined intersymbol interference and code states. Using ISI-state truncation techniques and the set-partitioning principles inherent in TCM, a systematic method is then developed for reducing the state complexity of the corresponding ISI and code trellis. A modified branch metric is used for canceling those ISI terms which are not represented by the trellis states. The approach leads to a family of Viterbi decoders which offer a tradeoff between decoding complexity and performance. An adaptive version of the proposed receiver is discussed, and an efficient structure for reduced-state decoding is given. Simulation results are presented for channels with severe amplitude and phase distortion. It is shown that the proposed receiver achieves a significant gain in noise margin over a conventional receiver which uses separate linear equalization and TCM decoding.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/26.31158