Silk fibroin/methacrylated gelatine/hydroxyapatite biomimetic nanofibrous membranes for guided bone regeneration

By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 263; no. Pt 2; p. 130380
Main Authors Li, Bo, Chen, Ying, He, Jisu, Shu, Yue, Yang, Haocheng, Liu, Junhong, Zhang, Chi, Xiao, Wenqian, Liu, Zhongning, Liao, Xiaoling
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment. •SF and GelMA nanofibrous -membranes containing nHA were prepared by electrospinning and photocrosslinking.•This novel nanofibrous membrane has -satisfactory mechanical strength and degradation rate.•This novel biomimetic SF/GelMA/nHA membrane provides a promising strategy to enhance bone regeneration.
AbstractList By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.
By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment. •SF and GelMA nanofibrous -membranes containing nHA were prepared by electrospinning and photocrosslinking.•This novel nanofibrous membrane has -satisfactory mechanical strength and degradation rate.•This novel biomimetic SF/GelMA/nHA membrane provides a promising strategy to enhance bone regeneration.
By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.
By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.
ArticleNumber 130380
Author Liu, Junhong
Li, Bo
Liao, Xiaoling
Liu, Zhongning
Chen, Ying
He, Jisu
Xiao, Wenqian
Shu, Yue
Zhang, Chi
Yang, Haocheng
Author_xml – sequence: 1
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 2
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China
– sequence: 3
  givenname: Jisu
  surname: He
  fullname: He, Jisu
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 4
  givenname: Yue
  surname: Shu
  fullname: Shu, Yue
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 5
  givenname: Haocheng
  surname: Yang
  fullname: Yang, Haocheng
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 6
  givenname: Junhong
  surname: Liu
  fullname: Liu, Junhong
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 7
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 8
  givenname: Wenqian
  surname: Xiao
  fullname: Xiao, Wenqian
  email: wqxiao@cqust.edu.cn
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 9
  givenname: Zhongning
  surname: Liu
  fullname: Liu, Zhongning
  email: liuzhongning@bjmu.edu.cn
  organization: Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
– sequence: 10
  givenname: Xiaoling
  surname: Liao
  fullname: Liao, Xiaoling
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38395277$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu2zAQRYkiQeOk_YVAy25kD18SBXTRIkgfQIAu0q4Jihw5dCXSJeWi_vvQcbzpxqsByXtmLudek4sQAxJyS2FJgTarzdJveh8nY5cMmFhSDlzBG7Kgqu1qAOAXZAFU0FqVpytynfOm3DaSqrfkiiveSda2C7J99OPvavB9ij6sJpyfjE370czoqjWW6gOunvYuxX97sy3HGavDXF-k3lbBhPgC73I14dQnEzBXQ0zVeudd6dEX21XCNQZMhY7hHbkczJjx_Wu9Ib--3P-8-1Y__Pj6_e7zQ20F0LlGCbSltnVcMdEz6DspGHLaNKqzzCllXQe9MG4QBphUbugH2vAWjBmkHCi_IR-Ofbcp_tlhnvXks8VxLA6LW82p5A0VEtqzUtZxwVoKHRTp7at010_o9Db5yaS9Pi20CD4eBTbFnBMO2vr55eNzMn7UFPQhP73Rp_z0IT99zK_gzX_4acJZ8NMRxLLTvx6TztZjsOh8QjtrF_25Fs9sT7pX
CitedBy_id crossref_primary_10_3390_polysaccharides6010023
crossref_primary_10_1016_j_bea_2025_100146
crossref_primary_10_1177_08927057241264464
crossref_primary_10_1007_s11706_024_0703_y
crossref_primary_10_1021_acsami_4c12470
crossref_primary_10_3390_biomimetics9040218
crossref_primary_10_1007_s40843_024_3202_4
Cites_doi 10.1088/1758-5090/ac8dc7
10.1002/adhm.202001369
10.1038/s41467-023-43476-9
10.1016/j.eurpolymj.2022.111671
10.1039/D2CS00618A
10.1021/acsbiomaterials.1c00426
10.1016/j.jmbbm.2019.02.003
10.1038/ncomms10376
10.1016/j.eurpolymj.2023.112255
10.1038/srep45655
10.1016/j.ijbiomac.2023.124078
10.1016/j.matlet.2018.06.045
10.1002/adhm.202101195
10.1016/j.actbio.2011.01.016
10.1038/nprot.2011.379
10.1016/j.biomaterials.2014.07.060
10.1002/adhm.201400760
10.1016/j.ijbiomac.2022.05.123
10.1016/j.ijbiomac.2023.123861
10.1002/adfm.201908556
10.1002/anie.201913828
10.1016/j.msec.2016.12.116
10.1039/C9TB02643F
10.1089/ten.teb.2013.0276
10.1016/j.msec.2020.110670
10.1016/j.msec.2019.01.079
10.1002/adfm.201604617
10.1016/j.msec.2017.06.016
10.1021/acsbiomaterials.0c00972
10.1016/j.biomaterials.2016.11.016
10.1016/j.apsusc.2015.05.047
10.1016/j.compositesb.2022.109620
10.1016/j.ijbiomac.2020.07.179
10.1016/j.biomaterials.2020.120561
10.1002/asia.201601592
10.1038/ncomms8402
10.1016/j.biomaterials.2006.01.017
10.1016/j.eurpolymj.2019.05.040
10.1016/j.ijbiomac.2022.08.171
10.1002/adfm.201802852
10.1016/j.msec.2018.10.041
10.1016/j.eurpolymj.2023.112170
10.1002/adfm.201909954
10.1016/j.ijbiomac.2023.124407
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2024.130380
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 38395277
10_1016_j_ijbiomac_2024_130380
S0141813024011838
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-e50171c7d3824b20b9542e316689c2d88cd90b4adf4a0258dfbf16370aaf55f13
IEDL.DBID .~1
ISSN 0141-8130
1879-0003
IngestDate Fri Jul 11 02:50:31 EDT 2025
Thu Jul 10 17:25:37 EDT 2025
Wed Feb 19 02:10:08 EST 2025
Thu Apr 24 23:05:04 EDT 2025
Tue Jul 01 03:36:57 EDT 2025
Sat Apr 20 15:58:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Bone regeneration
Silk fibroin
Methacrylated gelatine
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-e50171c7d3824b20b9542e316689c2d88cd90b4adf4a0258dfbf16370aaf55f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38395277
PQID 2934271090
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153614507
proquest_miscellaneous_2934271090
pubmed_primary_38395277
crossref_citationtrail_10_1016_j_ijbiomac_2024_130380
crossref_primary_10_1016_j_ijbiomac_2024_130380
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_130380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
2024-Apr
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ingavle, Leach (bb0050) 2014; 20
Niu, Meng, Wang, Han, Yan, Zhao, Xu, Ren, Zhao, Lin (bb0045) 2015; 6
Dehghani, Haghiralsadat, Yazdian, Sadeghian-Nodoushan, Ghasemi, Mazaheri, Pourmadadi, Naghib (bb0040) 2023; 238
Mizukami, Yamaguchi, Shiono, Takahashi, Shimizu, Konishi, Takakura, Nishikawa (bb0125) 2022; 181
Xie, Wang, He, Ding, Lu (bb0210) 2020; 30
Zhang, Xia, Pang, Zhao, Wang, Yang, Wan, Wu, Fu (bb0165) 2017; 73
Tuerkkan, Pazarceviren, Keskin, Machin, Duygulu, Tezcaner (bb0185) 2017; 80
Xue, He, Liu, Niu, Crawford, Coates, Chen, Shi, Zhang (bb0195) 2014; 35
Joshi, Lee, Tiwari, Maharjan, Poudel, Park, Kim (bb0120) 2020; 164
Ding, Li, Zhang, Liu, Ezazi, Liu, Santos (bb0035) 2019; 29
Liu, Shang, Li, Jiao, Qiu, Wang, Wu, Zhang, Wang, Yang, Wang (bb0065) 2021; 10
Wu, Luo, Cen, Li, Li, Li, Huang, He, Liang, Wu, Zhou, Li (bb0030) 2024; 15
Yu, He, Mu, Zhao, Kong, Liu, Tang (bb0175) 2020; 30
Han, Hu, Li, Gong, Guo, Zhu, Zhu, Yang, Li (bb0200) 2019; 95
Yu, Tang, Gohil, Laurencin (bb0005) 2015; 4
Lee, Lee, Ajiteru, Lee, Lee, Lee, Kim, Park, Kim, Choi, Hong, Sultan, Kim, Park (bb0095) 2022; 213
Li, Chen, He, Zhang, Wang, Xiao, Liu, Liao (bb0140) 2020; 6
Anant Deshpande, Antanitta, Kore, Kandasubramanian (bb0085) 2023; 196
Zhuge, Liu (bb0055) 2023; 194
Xue, Zhu, Zhang, Chen, Yang, Gao, Zhang, Luo, Wang, Zhao, Huang, Pei, Wan (bb0025) 2021; 10
Xing, Han, Cheng (bb0090) 2023; 240
Montazerian, Davoodi, Baidya, Badv, Haghniaz, Dalili, Milani, Hoorfar, Annabi, Khademhosseini, Weiss (bb0215) 2022; 51
Liu, Bi, Sun, Wang, Yu, Cheng, Yu, Cui (bb0060) 2020; 110
Sun, Lang, Zhang, Cheng, Zhang, Pan, Zhao, Yang, Zhang, Santos (bb0105) 2017; 27
Du, Niu, Hou, Xu, Li, Li, Fan (bb0135) 2020; 8
Sun, Zhu, Chen, Zhang (bb0180) 2017; 12
Yang, Rao, Liu, Dong, Zhang, Bei, Wen, Zhao (bb0015) 2022; 36
Li, Du, Gao, Tang, Chen, Liu, Yang, Zhao, Niu, Ruan (bb0130) 2022; 14
Li, Zhou, Wu, Feng, Yang, Wang, Xiao, Zhang, Zhu, Liu, Song, Zhang (bb0240) 2022; 11
Cao, Yang, Zhao, Li, Cheong, Han, Li (bb0235) 2020; 23
Yang, Liu, Cui, Li, Zhou, Wang, Wu, Li, Liu, Jiang, Zhang (bb0020) 2021; 268
Rockwood, Preda, Yucel, Wang, Lovett, Kaplan (bb0075) 2011; 6
Guo, Lana, Zhang, Cao, Cai, Yang (bb0205) 2015; 349
Xiao, Qu, Li, Che, Tan, Li, Li, Liao (bb0080) 2019; 118
Zhang, Chen, Li (bb0110) 2022; 221
Zhang, Li, Chen, Chen, Ma (bb0010) 2016; 7
De Souza, Henrique, De Oliveira, Capelo, Passos-Bueno, Catalani (bb0190) 2019; 93
Xiao, He, Nichol, Wang, Hutson, Wang, Du, Fan, Khademhosseini (bb0150) 2011; 7
Li, Deng, Zou, Rong, Shou, Rao, Wu, Wu, Quan, Zhou, Forouzanfar (bb0070) 2022; 234
Wz, Nw, Ming, Ts, Jing, Yz, Na, Zl (bb0220) 2022; 33
Baldwin, Wagner, Martine, Holzapfel, Theodoropoulos, Bas, Savi, Werner, De-Juan-Pardo, Hutmacher (bb0230) 2017; 121
Kokubo, Takadama (bb0155) 2006; 27
Yu, Mu, Jin, Liu, Tang (bb0170) 2019; 59
Xiao, Li, Qu, Wang, Tan, Li, Li, Yue, Li, Liao (bb0115) 2019; 99
Xiao, Xi, Li, Dan, Li, Liao, Fan (bb0145) 2018; 228
Zhang, Liu, Liu, Hu, Dai (bb0225) 2021; 7
Wei, Wang, Sun, Gong, Dai, Meng, Xu, Ma, Hu, Ma, Peng, Gu (bb0100) 2023; 235
Niu, Liu, Tian, Chen, Lei, Jiang, Feng, Fan (bb0160) 2017; 7
Rockwood (10.1016/j.ijbiomac.2024.130380_bb0075) 2011; 6
Lee (10.1016/j.ijbiomac.2024.130380_bb0095) 2022; 213
Joshi (10.1016/j.ijbiomac.2024.130380_bb0120) 2020; 164
Niu (10.1016/j.ijbiomac.2024.130380_bb0045) 2015; 6
Baldwin (10.1016/j.ijbiomac.2024.130380_bb0230) 2017; 121
Kokubo (10.1016/j.ijbiomac.2024.130380_bb0155) 2006; 27
Yang (10.1016/j.ijbiomac.2024.130380_bb0020) 2021; 268
Liu (10.1016/j.ijbiomac.2024.130380_bb0060) 2020; 110
Xiao (10.1016/j.ijbiomac.2024.130380_bb0145) 2018; 228
Guo (10.1016/j.ijbiomac.2024.130380_bb0205) 2015; 349
Li (10.1016/j.ijbiomac.2024.130380_bb0130) 2022; 14
Montazerian (10.1016/j.ijbiomac.2024.130380_bb0215) 2022; 51
Wei (10.1016/j.ijbiomac.2024.130380_bb0100) 2023; 235
Niu (10.1016/j.ijbiomac.2024.130380_bb0160) 2017; 7
Zhang (10.1016/j.ijbiomac.2024.130380_bb0010) 2016; 7
Sun (10.1016/j.ijbiomac.2024.130380_bb0105) 2017; 27
Yu (10.1016/j.ijbiomac.2024.130380_bb0005) 2015; 4
Du (10.1016/j.ijbiomac.2024.130380_bb0135) 2020; 8
Sun (10.1016/j.ijbiomac.2024.130380_bb0180) 2017; 12
Cao (10.1016/j.ijbiomac.2024.130380_bb0235) 2020; 23
Yang (10.1016/j.ijbiomac.2024.130380_bb0015) 2022; 36
Li (10.1016/j.ijbiomac.2024.130380_bb0070) 2022; 234
Xiao (10.1016/j.ijbiomac.2024.130380_bb0115) 2019; 99
Mizukami (10.1016/j.ijbiomac.2024.130380_bb0125) 2022; 181
Li (10.1016/j.ijbiomac.2024.130380_bb0240) 2022; 11
Wz (10.1016/j.ijbiomac.2024.130380_bb0220) 2022; 33
Tuerkkan (10.1016/j.ijbiomac.2024.130380_bb0185) 2017; 80
Ingavle (10.1016/j.ijbiomac.2024.130380_bb0050) 2014; 20
Han (10.1016/j.ijbiomac.2024.130380_bb0200) 2019; 95
Xue (10.1016/j.ijbiomac.2024.130380_bb0025) 2021; 10
Yu (10.1016/j.ijbiomac.2024.130380_bb0170) 2019; 59
Liu (10.1016/j.ijbiomac.2024.130380_bb0065) 2021; 10
Dehghani (10.1016/j.ijbiomac.2024.130380_bb0040) 2023; 238
Zhang (10.1016/j.ijbiomac.2024.130380_bb0110) 2022; 221
Ding (10.1016/j.ijbiomac.2024.130380_bb0035) 2019; 29
Zhuge (10.1016/j.ijbiomac.2024.130380_bb0055) 2023; 194
De Souza (10.1016/j.ijbiomac.2024.130380_bb0190) 2019; 93
Li (10.1016/j.ijbiomac.2024.130380_bb0140) 2020; 6
Zhang (10.1016/j.ijbiomac.2024.130380_bb0165) 2017; 73
Wu (10.1016/j.ijbiomac.2024.130380_bb0030) 2024; 15
Xue (10.1016/j.ijbiomac.2024.130380_bb0195) 2014; 35
Zhang (10.1016/j.ijbiomac.2024.130380_bb0225) 2021; 7
Xiao (10.1016/j.ijbiomac.2024.130380_bb0150) 2011; 7
Yu (10.1016/j.ijbiomac.2024.130380_bb0175) 2020; 30
Xing (10.1016/j.ijbiomac.2024.130380_bb0090) 2023; 240
Xie (10.1016/j.ijbiomac.2024.130380_bb0210) 2020; 30
Xiao (10.1016/j.ijbiomac.2024.130380_bb0080) 2019; 118
Anant Deshpande (10.1016/j.ijbiomac.2024.130380_bb0085) 2023; 196
References_xml – volume: 181
  year: 2022
  ident: bb0125
  article-title: Drug-preloadable methacrylated gelatin microspheres fabricated using an aqueous two-phase system
  publication-title: Eur. Polym. J.
– volume: 27
  year: 2017
  ident: bb0105
  article-title: Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 10376
  year: 2016
  ident: bb0010
  article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects
  publication-title: Nat. Commun.
– volume: 10
  year: 2021
  ident: bb0025
  article-title: Accelerated bone regeneration by MOF modified multifunctional membranes through enhancement of osteogenic and angiogenic performance
  publication-title: Adv. Healthc. Mater.
– volume: 7
  start-page: 45655
  year: 2017
  ident: bb0160
  article-title: Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold
  publication-title: Sci. Rep.
– volume: 213
  start-page: 317
  year: 2022
  end-page: 327
  ident: bb0095
  article-title: Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing
  publication-title: Int. J. Biol. Macromol.
– volume: 23
  start-page: 89
  year: 2020
  end-page: 100
  ident: bb0235
  article-title: Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering
  publication-title: J. Orthop. Transl.
– volume: 93
  start-page: 93
  year: 2019
  end-page: 104
  ident: bb0190
  article-title: A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 110
  year: 2020
  ident: bb0060
  article-title: Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration
  publication-title: Mater. Sci. Eng. C
– volume: 95
  start-page: 1
  year: 2019
  end-page: 10
  ident: bb0200
  article-title: In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair
  publication-title: Mater. Sci. Eng. C
– volume: 15
  start-page: 119
  year: 2024
  ident: bb0030
  article-title: All-in-one porous membrane enables full protection in guided bone regeneration
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1909954
  year: 2020
  ident: bb0210
  article-title: Mussel inspired hydrogels for self-dhesive bioelectronics
  publication-title: Adv. Funct. Mater.
– volume: 234
  year: 2022
  ident: bb0070
  article-title: Development and fabrication of co-axially electrospun biomimetic periosteum with a decellularized periosteal ECM shell/PCL core structure to promote the repair of critical-sized bone defects
  publication-title: Compos. Part B-Eng.
– volume: 35
  start-page: 9395
  year: 2014
  end-page: 9405
  ident: bb0195
  article-title: Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes
  publication-title: Biomaterials
– volume: 6
  start-page: 7402
  year: 2015
  ident: bb0045
  article-title: General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis
  publication-title: Nat. Commun.
– volume: 221
  start-page: 91
  year: 2022
  end-page: 107
  ident: bb0110
  article-title: Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 8
  start-page: 2562
  year: 2020
  end-page: 2572
  ident: bb0135
  article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress
  publication-title: J. Mater. Chem. B
– volume: 33
  start-page: 41
  year: 2022
  end-page: 54
  ident: bb0220
  article-title: Periosteum and development of the tissue-engineered periosteum for guided bone regeneration
  publication-title: J. Orthop. Transl.
– volume: 121
  start-page: 193
  year: 2017
  end-page: 204
  ident: bb0230
  article-title: Periosteum tissue engineering in an orthotopic in vivo platform
  publication-title: Biomaterials
– volume: 36
  start-page: 18
  year: 2022
  end-page: 32
  ident: bb0015
  article-title: Biomimicking design of artificial periosteum for promoting bone healing
  publication-title: J. Orthop. Transl.
– volume: 20
  start-page: 277
  year: 2014
  end-page: 293
  ident: bb0050
  article-title: Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering
  publication-title: Tissue Eng. Part B Rev.
– volume: 12
  start-page: 655
  year: 2017
  end-page: 664
  ident: bb0180
  article-title: Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment
  publication-title: Chem. Asian J.
– volume: 80
  start-page: 484
  year: 2017
  end-page: 493
  ident: bb0185
  article-title: Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration
  publication-title: Mater. Sci. Eng. C
– volume: 268
  year: 2021
  ident: bb0020
  article-title: Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration
  publication-title: Biomaterials
– volume: 240
  year: 2023
  ident: bb0090
  article-title: Biomedical applications of chitosan/silk fibroin composites: a review
  publication-title: Int. J. Biol. Macromol.
– volume: 73
  start-page: 537
  year: 2017
  end-page: 543
  ident: bb0165
  article-title: Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering
  publication-title: Mater. Eng. C Mater. Biol. Appl.
– volume: 51
  start-page: 9127
  year: 2022
  ident: bb0215
  article-title: Bio-macromolecular design roadmap towards tough bioadhesives
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2019
  ident: bb0035
  article-title: Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 90
  year: 2022
  end-page: 106
  ident: bb0240
  article-title: Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size
  publication-title: Bioact. Mater.
– volume: 194
  year: 2023
  ident: bb0055
  article-title: Controlled preparation of polyimide/polysulfone amide (PI/PSA) porous micro-nano fiber membranes by microemulsion electrospinning for excellent thermal insulation
  publication-title: Eur. Polym. J.
– volume: 99
  start-page: 57
  year: 2019
  end-page: 67
  ident: bb0115
  article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches
  publication-title: Mater. Sci. Eng. C
– volume: 6
  start-page: 6737
  year: 2020
  end-page: 6747
  ident: bb0140
  article-title: Biomimetic membranes of methacrylated gelatin/nanohydroxyapatite/poly(L-lactic acid) for enhanced bone regeneration
  publication-title: ACS Biomater. Sci. Eng.
– volume: 349
  start-page: 538
  year: 2015
  end-page: 548
  ident: bb0205
  article-title: Mineralization on polylactide/gelatin composite nanofibers using simulated body fluid containing amino acid
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 2101195
  year: 2021
  ident: bb0065
  article-title: Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration
  publication-title: Adv. Healthc. Mater.
– volume: 164
  start-page: 976
  year: 2020
  end-page: 985
  ident: bb0120
  article-title: Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  start-page: 3321
  year: 2021
  end-page: 3331
  ident: bb0225
  article-title: Poly-epsilon-caprolactone/whitlockite electrospun bionic membrane with an osteogenic-angiogenic coupling effect for periosteal regeneration
  publication-title: ACS Biomater. Sci. Eng.
– volume: 228
  start-page: 360
  year: 2018
  end-page: 364
  ident: bb0145
  article-title: Fabrication and assembly of porous micropatterned scaffolds for modular tissue engineering
  publication-title: Mater. Lett.
– volume: 118
  start-page: 382
  year: 2019
  end-page: 392
  ident: bb0080
  article-title: Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid
  publication-title: Eur. Polym. J.
– volume: 238
  year: 2023
  ident: bb0040
  article-title: Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: in vitro and in vivo studies
  publication-title: Int. J. Biol. Macromol.
– volume: 4
  start-page: 1268
  year: 2015
  end-page: 1285
  ident: bb0005
  article-title: Biomaterials for bone regenerative engineering
  publication-title: Adv. Healthc. Mater.
– volume: 196
  year: 2023
  ident: bb0085
  article-title: Silk based bio–inks for medical applications
  publication-title: Eur. Polym. J.
– volume: 235
  year: 2023
  ident: bb0100
  article-title: Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  year: 2022
  ident: bb0130
  article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration
  publication-title: Biofabrication
– volume: 30
  year: 2020
  ident: bb0175
  article-title: Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 2071
  year: 2019
  end-page: 2075
  ident: bb0170
  article-title: Organic-inorganic copolymerization for a homogenous composite without an interphase boundary
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1612
  year: 2011
  end-page: 1631
  ident: bb0075
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
– volume: 27
  start-page: 2907
  year: 2006
  end-page: 2915
  ident: bb0155
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
– volume: 7
  start-page: 2384
  year: 2011
  end-page: 2393
  ident: bb0150
  article-title: Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels
  publication-title: Acta Biomater.
– volume: 14
  issue: 4
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0130
  article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ac8dc7
– volume: 36
  start-page: 18
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0015
  article-title: Biomimicking design of artificial periosteum for promoting bone healing
  publication-title: J. Orthop. Transl.
– volume: 10
  issue: 6
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130380_bb0025
  article-title: Accelerated bone regeneration by MOF modified multifunctional membranes through enhancement of osteogenic and angiogenic performance
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202001369
– volume: 15
  start-page: 119
  issue: 1
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.130380_bb0030
  article-title: All-in-one porous membrane enables full protection in guided bone regeneration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43476-9
– volume: 181
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0125
  article-title: Drug-preloadable methacrylated gelatin microspheres fabricated using an aqueous two-phase system
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2022.111671
– volume: 51
  start-page: 9127
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0215
  article-title: Bio-macromolecular design roadmap towards tough bioadhesives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00618A
– volume: 7
  start-page: 3321
  issue: 7
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130380_bb0225
  article-title: Poly-epsilon-caprolactone/whitlockite electrospun bionic membrane with an osteogenic-angiogenic coupling effect for periosteal regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c00426
– volume: 93
  start-page: 93
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130380_bb0190
  article-title: A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.02.003
– volume: 7
  start-page: 10376
  year: 2016
  ident: 10.1016/j.ijbiomac.2024.130380_bb0010
  article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10376
– volume: 196
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130380_bb0085
  article-title: Silk based bio–inks for medical applications
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2023.112255
– volume: 7
  start-page: 45655
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130380_bb0160
  article-title: Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold
  publication-title: Sci. Rep.
  doi: 10.1038/srep45655
– volume: 238
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130380_bb0040
  article-title: Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: in vitro and in vivo studies
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.124078
– volume: 228
  start-page: 360
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.130380_bb0145
  article-title: Fabrication and assembly of porous micropatterned scaffolds for modular tissue engineering
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.06.045
– volume: 10
  start-page: 2101195
  issue: 21
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130380_bb0065
  article-title: Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202101195
– volume: 7
  start-page: 2384
  issue: 6
  year: 2011
  ident: 10.1016/j.ijbiomac.2024.130380_bb0150
  article-title: Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.01.016
– volume: 6
  start-page: 1612
  issue: 10
  year: 2011
  ident: 10.1016/j.ijbiomac.2024.130380_bb0075
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.379
– volume: 35
  start-page: 9395
  issue: 34
  year: 2014
  ident: 10.1016/j.ijbiomac.2024.130380_bb0195
  article-title: Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.060
– volume: 4
  start-page: 1268
  issue: 9
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.130380_bb0005
  article-title: Biomaterials for bone regenerative engineering
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201400760
– volume: 213
  start-page: 317
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0095
  article-title: Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.05.123
– volume: 33
  start-page: 41
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0220
  article-title: Periosteum and development of the tissue-engineered periosteum for guided bone regeneration
  publication-title: J. Orthop. Transl.
– volume: 235
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130380_bb0100
  article-title: Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.123861
– volume: 30
  issue: 6
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0175
  article-title: Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908556
– volume: 59
  start-page: 2071
  issue: 5
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130380_bb0170
  article-title: Organic-inorganic copolymerization for a homogenous composite without an interphase boundary
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913828
– volume: 73
  start-page: 537
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130380_bb0165
  article-title: Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering
  publication-title: Mater. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2016.12.116
– volume: 8
  start-page: 2562
  issue: 13
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0135
  article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02643F
– volume: 20
  start-page: 277
  issue: 4
  year: 2014
  ident: 10.1016/j.ijbiomac.2024.130380_bb0050
  article-title: Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2013.0276
– volume: 110
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0060
  article-title: Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.110670
– volume: 99
  start-page: 57
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130380_bb0115
  article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.079
– volume: 27
  issue: 2
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130380_bb0105
  article-title: Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604617
– volume: 80
  start-page: 484
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130380_bb0185
  article-title: Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.06.016
– volume: 6
  start-page: 6737
  issue: 12
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0140
  article-title: Biomimetic membranes of methacrylated gelatin/nanohydroxyapatite/poly(L-lactic acid) for enhanced bone regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00972
– volume: 121
  start-page: 193
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130380_bb0230
  article-title: Periosteum tissue engineering in an orthotopic in vivo platform
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.11.016
– volume: 349
  start-page: 538
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.130380_bb0205
  article-title: Mineralization on polylactide/gelatin composite nanofibers using simulated body fluid containing amino acid
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.047
– volume: 23
  start-page: 89
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0235
  article-title: Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering
  publication-title: J. Orthop. Transl.
– volume: 234
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0070
  article-title: Development and fabrication of co-axially electrospun biomimetic periosteum with a decellularized periosteal ECM shell/PCL core structure to promote the repair of critical-sized bone defects
  publication-title: Compos. Part B-Eng.
  doi: 10.1016/j.compositesb.2022.109620
– volume: 164
  start-page: 976
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0120
  article-title: Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.07.179
– volume: 268
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.130380_bb0020
  article-title: Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120561
– volume: 12
  start-page: 655
  issue: 6
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.130380_bb0180
  article-title: Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201601592
– volume: 6
  start-page: 7402
  year: 2015
  ident: 10.1016/j.ijbiomac.2024.130380_bb0045
  article-title: General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8402
– volume: 27
  start-page: 2907
  issue: 15
  year: 2006
  ident: 10.1016/j.ijbiomac.2024.130380_bb0155
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 118
  start-page: 382
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130380_bb0080
  article-title: Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.05.040
– volume: 221
  start-page: 91
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0110
  article-title: Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.08.171
– volume: 29
  issue: 2
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130380_bb0035
  article-title: Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802852
– volume: 95
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.130380_bb0200
  article-title: In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.10.041
– volume: 11
  start-page: 90
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.130380_bb0240
  article-title: Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size
  publication-title: Bioact. Mater.
– volume: 194
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130380_bb0055
  article-title: Controlled preparation of polyimide/polysulfone amide (PI/PSA) porous micro-nano fiber membranes by microemulsion electrospinning for excellent thermal insulation
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2023.112170
– volume: 30
  start-page: 1909954
  issue: 25
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.130380_bb0210
  article-title: Mussel inspired hydrogels for self-dhesive bioelectronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909954
– volume: 240
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.130380_bb0090
  article-title: Biomedical applications of chitosan/silk fibroin composites: a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.124407
SSID ssj0006518
Score 2.4748793
Snippet By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130380
SubjectTerms animal models
biocompatibility
biomimetics
bone formation
Bone regeneration
fibroins
gelatin
hydroxyapatite
Methacrylated gelatine
nanofibers
Silk fibroin
Title Silk fibroin/methacrylated gelatine/hydroxyapatite biomimetic nanofibrous membranes for guided bone regeneration
URI https://dx.doi.org/10.1016/j.ijbiomac.2024.130380
https://www.ncbi.nlm.nih.gov/pubmed/38395277
https://www.proquest.com/docview/2934271090
https://www.proquest.com/docview/3153614507
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4heqAXREtbAhQtElfjZB_2-oiiorQVXACJ22qfwSFxopAcculv74wflEptOfRoa8dezbfa-db-ZoaQM8u8UC4WiVTYwox7lViI2klhhXMWGIBx-EH_6job3Ylv9_J-iwy7XBiUVbZ7f7On17t1eydtvZkuyjJFWRKEJ45FuoAlc0z4FSLHVX7-45fMI5P1Nz4cnODoF1nCk_NygknuBksZMoGNkTmWh_xzgPobAa0D0eUe2W0ZJL1oJvmObIXqPdkZdo3b9snippw-0gjn4DmcerFFtHHLzRRIpafjWvtWhfRh41HAYlBQvQoUJ1jOMKGRVqaa18brJzoLMzhNw25IgdvS8br08Aw7rwJdhnFdsBpx_UDuLr_cDkdJ21ghceCrVRIkVslxueeKCcv6tpCCBT7IMlU45pVyvuhbYXwUBjiR8tFG4G1535goZRzwj2S7gncdEJoH5mOwuQUEEA5rg2H9IqpBNNLJrEdk503t2qrj2Pxiqjt52UR3KGhEQTco9Ej6bLdo6m68alF0YOnfVpCG4PCq7WmHrgaw8J8J-Bb8rIENCYZ61X-M4RA1gOUAs-6RT83SeJ4zBwIqWZ4f_sfsjshbvGr0Qsdke7Vch89AhVb2pF7rJ-TNxdfvo-ufQh0Kxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6k6ZAuQd910gcLdFVkU6REjYXRwG2TLE2AbASfrlxbNhx7yJLfnjs90hZom6GrxJOI-yjeR-rjHcAHy71QLpaJVFTCLPMqsRi1k9IK5ywyAONoQ__0LJ9ciC-X8nIHxv1ZGJJVdnN_O6c3s3V3Je28ma6qKiVZEoanjJJ0IUvO1AN4KPDzpTIGRzc_dR65bDb5qHVCzX85Jjw7qmZ0yt1QLkMuqDJyRvkh_xyh_sZAm0h0_Bj2OwrJPra9fAI7oX4Ke-O-ctszWH2r5j9YxIXwEpe9VCPauPX1HFmlZ9NG_FaH9Pu1JwWLIUX1JjDqYLWgE42sNvWyMd5esUVY4HIap0OG5JZNt5XHZ9hlHdg6TJuM1QTsc7g4_nQ-niRdZYXEobM2SZCUJscVHt0lLB_aUgoeslGeq9Jxr5Tz5dAK46MwSIqUjzYicSuGxkQp4yh7Abs1vusVsCJwH4MtLEJAeFgbDB-WUY2ikU7mA5C9N7Xr0o5T9Yu57vVlM92joAkF3aIwgPTObtUm3rjXouzB0r8NIY3R4V7b9z26GsGinyboW_SzRjokOAlW_9Emw7CBNAep9QBetkPjrs8ZMlDJi-LgP3r3DvYm56cn-uTz2ddDeER3WvHQa9jdrLfhDfKijX3bjPtbPIQMVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+fibroin%2Fmethacrylated+gelatine%2Fhydroxyapatite+biomimetic+nanofibrous+membranes+for+guided+bone+regeneration&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Li%2C+Bo&rft.au=Chen%2C+Ying&rft.au=He%2C+Jisu&rft.au=Shu%2C+Yue&rft.date=2024-04-01&rft.issn=0141-8130&rft.volume=263&rft.spage=130380&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.130380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2024_130380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon