Silk fibroin/methacrylated gelatine/hydroxyapatite biomimetic nanofibrous membranes for guided bone regeneration
By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR...
Saved in:
Published in | International journal of biological macromolecules Vol. 263; no. Pt 2; p. 130380 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.
•SF and GelMA nanofibrous -membranes containing nHA were prepared by electrospinning and photocrosslinking.•This novel nanofibrous membrane has -satisfactory mechanical strength and degradation rate.•This novel biomimetic SF/GelMA/nHA membrane provides a promising strategy to enhance bone regeneration. |
---|---|
AbstractList | By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment.By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment. By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment. •SF and GelMA nanofibrous -membranes containing nHA were prepared by electrospinning and photocrosslinking.•This novel nanofibrous membrane has -satisfactory mechanical strength and degradation rate.•This novel biomimetic SF/GelMA/nHA membrane provides a promising strategy to enhance bone regeneration. By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment. By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising potential for guided bone regeneration (GBR) in the treatment of clinical bone defects. To develop a degradable and osteogenic membrane for GBR by combining the natural biomacromolecule silk fibroin (SF) and gelatine with the bioactive nano hydroxyapatite (nHA), the anhydride-modified gelatine-nano hydroxyapatite (GelMA-nHA) composites were synthesized in situ and introduced into silk fibroin to prepare nanofibrous membranes with different ratios using electrospinning and photocrosslinking. The nanofibrous membranes, particularly those with a mass ratio of 7:2:1, were found to exhibit satisfactory elongation at break up to 110 %, maintain the nanofibrous structure for up to 28 days, and rapidly form bone-like apatite within 3 days, thus offering advantages when it comes to guided bone regeneration. In vitro cell results showed that the SF/GelMA/nHA membranes had excellent biocompatibility and enhanced osteogenic differentiation of hBMSCs. In vivo studies revealed that the hybrid composite membranes can improve bone regeneration of critical-sized calvarial defects in rat model. Therefore, the novel hybrid nanofibrous membrane is proposed to be a alternative candidate for creating a bionic microenvironment that promotes bone regeneration, indicating their potential application to bone injury treatment. |
ArticleNumber | 130380 |
Author | Liu, Junhong Li, Bo Liao, Xiaoling Liu, Zhongning Chen, Ying He, Jisu Xiao, Wenqian Shu, Yue Zhang, Chi Yang, Haocheng |
Author_xml | – sequence: 1 givenname: Bo surname: Li fullname: Li, Bo organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 2 givenname: Ying surname: Chen fullname: Chen, Ying organization: The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China – sequence: 3 givenname: Jisu surname: He fullname: He, Jisu organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 4 givenname: Yue surname: Shu fullname: Shu, Yue organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 5 givenname: Haocheng surname: Yang fullname: Yang, Haocheng organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 6 givenname: Junhong surname: Liu fullname: Liu, Junhong organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 7 givenname: Chi surname: Zhang fullname: Zhang, Chi organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 8 givenname: Wenqian surname: Xiao fullname: Xiao, Wenqian email: wqxiao@cqust.edu.cn organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 9 givenname: Zhongning surname: Liu fullname: Liu, Zhongning email: liuzhongning@bjmu.edu.cn organization: Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China – sequence: 10 givenname: Xiaoling surname: Liao fullname: Liao, Xiaoling organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38395277$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu2zAQRYkiQeOk_YVAy25kD18SBXTRIkgfQIAu0q4Jihw5dCXSJeWi_vvQcbzpxqsByXtmLudek4sQAxJyS2FJgTarzdJveh8nY5cMmFhSDlzBG7Kgqu1qAOAXZAFU0FqVpytynfOm3DaSqrfkiiveSda2C7J99OPvavB9ij6sJpyfjE370czoqjWW6gOunvYuxX97sy3HGavDXF-k3lbBhPgC73I14dQnEzBXQ0zVeudd6dEX21XCNQZMhY7hHbkczJjx_Wu9Ib--3P-8-1Y__Pj6_e7zQ20F0LlGCbSltnVcMdEz6DspGHLaNKqzzCllXQe9MG4QBphUbugH2vAWjBmkHCi_IR-Ofbcp_tlhnvXks8VxLA6LW82p5A0VEtqzUtZxwVoKHRTp7at010_o9Db5yaS9Pi20CD4eBTbFnBMO2vr55eNzMn7UFPQhP73Rp_z0IT99zK_gzX_4acJZ8NMRxLLTvx6TztZjsOh8QjtrF_25Fs9sT7pX |
CitedBy_id | crossref_primary_10_3390_polysaccharides6010023 crossref_primary_10_1016_j_bea_2025_100146 crossref_primary_10_1177_08927057241264464 crossref_primary_10_1007_s11706_024_0703_y crossref_primary_10_1021_acsami_4c12470 crossref_primary_10_3390_biomimetics9040218 crossref_primary_10_1007_s40843_024_3202_4 |
Cites_doi | 10.1088/1758-5090/ac8dc7 10.1002/adhm.202001369 10.1038/s41467-023-43476-9 10.1016/j.eurpolymj.2022.111671 10.1039/D2CS00618A 10.1021/acsbiomaterials.1c00426 10.1016/j.jmbbm.2019.02.003 10.1038/ncomms10376 10.1016/j.eurpolymj.2023.112255 10.1038/srep45655 10.1016/j.ijbiomac.2023.124078 10.1016/j.matlet.2018.06.045 10.1002/adhm.202101195 10.1016/j.actbio.2011.01.016 10.1038/nprot.2011.379 10.1016/j.biomaterials.2014.07.060 10.1002/adhm.201400760 10.1016/j.ijbiomac.2022.05.123 10.1016/j.ijbiomac.2023.123861 10.1002/adfm.201908556 10.1002/anie.201913828 10.1016/j.msec.2016.12.116 10.1039/C9TB02643F 10.1089/ten.teb.2013.0276 10.1016/j.msec.2020.110670 10.1016/j.msec.2019.01.079 10.1002/adfm.201604617 10.1016/j.msec.2017.06.016 10.1021/acsbiomaterials.0c00972 10.1016/j.biomaterials.2016.11.016 10.1016/j.apsusc.2015.05.047 10.1016/j.compositesb.2022.109620 10.1016/j.ijbiomac.2020.07.179 10.1016/j.biomaterials.2020.120561 10.1002/asia.201601592 10.1038/ncomms8402 10.1016/j.biomaterials.2006.01.017 10.1016/j.eurpolymj.2019.05.040 10.1016/j.ijbiomac.2022.08.171 10.1002/adfm.201802852 10.1016/j.msec.2018.10.041 10.1016/j.eurpolymj.2023.112170 10.1002/adfm.201909954 10.1016/j.ijbiomac.2023.124407 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2024.130380 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
ExternalDocumentID | 38395277 10_1016_j_ijbiomac_2024_130380 S0141813024011838 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-e50171c7d3824b20b9542e316689c2d88cd90b4adf4a0258dfbf16370aaf55f13 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Jul 11 02:50:31 EDT 2025 Thu Jul 10 17:25:37 EDT 2025 Wed Feb 19 02:10:08 EST 2025 Thu Apr 24 23:05:04 EDT 2025 Tue Jul 01 03:36:57 EDT 2025 Sat Apr 20 15:58:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Bone regeneration Silk fibroin Methacrylated gelatine |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-e50171c7d3824b20b9542e316689c2d88cd90b4adf4a0258dfbf16370aaf55f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38395277 |
PQID | 2934271090 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153614507 proquest_miscellaneous_2934271090 pubmed_primary_38395277 crossref_citationtrail_10_1016_j_ijbiomac_2024_130380 crossref_primary_10_1016_j_ijbiomac_2024_130380 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_130380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 2024-Apr 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ingavle, Leach (bb0050) 2014; 20 Niu, Meng, Wang, Han, Yan, Zhao, Xu, Ren, Zhao, Lin (bb0045) 2015; 6 Dehghani, Haghiralsadat, Yazdian, Sadeghian-Nodoushan, Ghasemi, Mazaheri, Pourmadadi, Naghib (bb0040) 2023; 238 Mizukami, Yamaguchi, Shiono, Takahashi, Shimizu, Konishi, Takakura, Nishikawa (bb0125) 2022; 181 Xie, Wang, He, Ding, Lu (bb0210) 2020; 30 Zhang, Xia, Pang, Zhao, Wang, Yang, Wan, Wu, Fu (bb0165) 2017; 73 Tuerkkan, Pazarceviren, Keskin, Machin, Duygulu, Tezcaner (bb0185) 2017; 80 Xue, He, Liu, Niu, Crawford, Coates, Chen, Shi, Zhang (bb0195) 2014; 35 Joshi, Lee, Tiwari, Maharjan, Poudel, Park, Kim (bb0120) 2020; 164 Ding, Li, Zhang, Liu, Ezazi, Liu, Santos (bb0035) 2019; 29 Liu, Shang, Li, Jiao, Qiu, Wang, Wu, Zhang, Wang, Yang, Wang (bb0065) 2021; 10 Wu, Luo, Cen, Li, Li, Li, Huang, He, Liang, Wu, Zhou, Li (bb0030) 2024; 15 Yu, He, Mu, Zhao, Kong, Liu, Tang (bb0175) 2020; 30 Han, Hu, Li, Gong, Guo, Zhu, Zhu, Yang, Li (bb0200) 2019; 95 Yu, Tang, Gohil, Laurencin (bb0005) 2015; 4 Lee, Lee, Ajiteru, Lee, Lee, Lee, Kim, Park, Kim, Choi, Hong, Sultan, Kim, Park (bb0095) 2022; 213 Li, Chen, He, Zhang, Wang, Xiao, Liu, Liao (bb0140) 2020; 6 Anant Deshpande, Antanitta, Kore, Kandasubramanian (bb0085) 2023; 196 Zhuge, Liu (bb0055) 2023; 194 Xue, Zhu, Zhang, Chen, Yang, Gao, Zhang, Luo, Wang, Zhao, Huang, Pei, Wan (bb0025) 2021; 10 Xing, Han, Cheng (bb0090) 2023; 240 Montazerian, Davoodi, Baidya, Badv, Haghniaz, Dalili, Milani, Hoorfar, Annabi, Khademhosseini, Weiss (bb0215) 2022; 51 Liu, Bi, Sun, Wang, Yu, Cheng, Yu, Cui (bb0060) 2020; 110 Sun, Lang, Zhang, Cheng, Zhang, Pan, Zhao, Yang, Zhang, Santos (bb0105) 2017; 27 Du, Niu, Hou, Xu, Li, Li, Fan (bb0135) 2020; 8 Sun, Zhu, Chen, Zhang (bb0180) 2017; 12 Yang, Rao, Liu, Dong, Zhang, Bei, Wen, Zhao (bb0015) 2022; 36 Li, Du, Gao, Tang, Chen, Liu, Yang, Zhao, Niu, Ruan (bb0130) 2022; 14 Li, Zhou, Wu, Feng, Yang, Wang, Xiao, Zhang, Zhu, Liu, Song, Zhang (bb0240) 2022; 11 Cao, Yang, Zhao, Li, Cheong, Han, Li (bb0235) 2020; 23 Yang, Liu, Cui, Li, Zhou, Wang, Wu, Li, Liu, Jiang, Zhang (bb0020) 2021; 268 Rockwood, Preda, Yucel, Wang, Lovett, Kaplan (bb0075) 2011; 6 Guo, Lana, Zhang, Cao, Cai, Yang (bb0205) 2015; 349 Xiao, Qu, Li, Che, Tan, Li, Li, Liao (bb0080) 2019; 118 Zhang, Chen, Li (bb0110) 2022; 221 Zhang, Li, Chen, Chen, Ma (bb0010) 2016; 7 De Souza, Henrique, De Oliveira, Capelo, Passos-Bueno, Catalani (bb0190) 2019; 93 Xiao, He, Nichol, Wang, Hutson, Wang, Du, Fan, Khademhosseini (bb0150) 2011; 7 Li, Deng, Zou, Rong, Shou, Rao, Wu, Wu, Quan, Zhou, Forouzanfar (bb0070) 2022; 234 Wz, Nw, Ming, Ts, Jing, Yz, Na, Zl (bb0220) 2022; 33 Baldwin, Wagner, Martine, Holzapfel, Theodoropoulos, Bas, Savi, Werner, De-Juan-Pardo, Hutmacher (bb0230) 2017; 121 Kokubo, Takadama (bb0155) 2006; 27 Yu, Mu, Jin, Liu, Tang (bb0170) 2019; 59 Xiao, Li, Qu, Wang, Tan, Li, Li, Yue, Li, Liao (bb0115) 2019; 99 Xiao, Xi, Li, Dan, Li, Liao, Fan (bb0145) 2018; 228 Zhang, Liu, Liu, Hu, Dai (bb0225) 2021; 7 Wei, Wang, Sun, Gong, Dai, Meng, Xu, Ma, Hu, Ma, Peng, Gu (bb0100) 2023; 235 Niu, Liu, Tian, Chen, Lei, Jiang, Feng, Fan (bb0160) 2017; 7 Rockwood (10.1016/j.ijbiomac.2024.130380_bb0075) 2011; 6 Lee (10.1016/j.ijbiomac.2024.130380_bb0095) 2022; 213 Joshi (10.1016/j.ijbiomac.2024.130380_bb0120) 2020; 164 Niu (10.1016/j.ijbiomac.2024.130380_bb0045) 2015; 6 Baldwin (10.1016/j.ijbiomac.2024.130380_bb0230) 2017; 121 Kokubo (10.1016/j.ijbiomac.2024.130380_bb0155) 2006; 27 Yang (10.1016/j.ijbiomac.2024.130380_bb0020) 2021; 268 Liu (10.1016/j.ijbiomac.2024.130380_bb0060) 2020; 110 Xiao (10.1016/j.ijbiomac.2024.130380_bb0145) 2018; 228 Guo (10.1016/j.ijbiomac.2024.130380_bb0205) 2015; 349 Li (10.1016/j.ijbiomac.2024.130380_bb0130) 2022; 14 Montazerian (10.1016/j.ijbiomac.2024.130380_bb0215) 2022; 51 Wei (10.1016/j.ijbiomac.2024.130380_bb0100) 2023; 235 Niu (10.1016/j.ijbiomac.2024.130380_bb0160) 2017; 7 Zhang (10.1016/j.ijbiomac.2024.130380_bb0010) 2016; 7 Sun (10.1016/j.ijbiomac.2024.130380_bb0105) 2017; 27 Yu (10.1016/j.ijbiomac.2024.130380_bb0005) 2015; 4 Du (10.1016/j.ijbiomac.2024.130380_bb0135) 2020; 8 Sun (10.1016/j.ijbiomac.2024.130380_bb0180) 2017; 12 Cao (10.1016/j.ijbiomac.2024.130380_bb0235) 2020; 23 Yang (10.1016/j.ijbiomac.2024.130380_bb0015) 2022; 36 Li (10.1016/j.ijbiomac.2024.130380_bb0070) 2022; 234 Xiao (10.1016/j.ijbiomac.2024.130380_bb0115) 2019; 99 Mizukami (10.1016/j.ijbiomac.2024.130380_bb0125) 2022; 181 Li (10.1016/j.ijbiomac.2024.130380_bb0240) 2022; 11 Wz (10.1016/j.ijbiomac.2024.130380_bb0220) 2022; 33 Tuerkkan (10.1016/j.ijbiomac.2024.130380_bb0185) 2017; 80 Ingavle (10.1016/j.ijbiomac.2024.130380_bb0050) 2014; 20 Han (10.1016/j.ijbiomac.2024.130380_bb0200) 2019; 95 Xue (10.1016/j.ijbiomac.2024.130380_bb0025) 2021; 10 Yu (10.1016/j.ijbiomac.2024.130380_bb0170) 2019; 59 Liu (10.1016/j.ijbiomac.2024.130380_bb0065) 2021; 10 Dehghani (10.1016/j.ijbiomac.2024.130380_bb0040) 2023; 238 Zhang (10.1016/j.ijbiomac.2024.130380_bb0110) 2022; 221 Ding (10.1016/j.ijbiomac.2024.130380_bb0035) 2019; 29 Zhuge (10.1016/j.ijbiomac.2024.130380_bb0055) 2023; 194 De Souza (10.1016/j.ijbiomac.2024.130380_bb0190) 2019; 93 Li (10.1016/j.ijbiomac.2024.130380_bb0140) 2020; 6 Zhang (10.1016/j.ijbiomac.2024.130380_bb0165) 2017; 73 Wu (10.1016/j.ijbiomac.2024.130380_bb0030) 2024; 15 Xue (10.1016/j.ijbiomac.2024.130380_bb0195) 2014; 35 Zhang (10.1016/j.ijbiomac.2024.130380_bb0225) 2021; 7 Xiao (10.1016/j.ijbiomac.2024.130380_bb0150) 2011; 7 Yu (10.1016/j.ijbiomac.2024.130380_bb0175) 2020; 30 Xing (10.1016/j.ijbiomac.2024.130380_bb0090) 2023; 240 Xie (10.1016/j.ijbiomac.2024.130380_bb0210) 2020; 30 Xiao (10.1016/j.ijbiomac.2024.130380_bb0080) 2019; 118 Anant Deshpande (10.1016/j.ijbiomac.2024.130380_bb0085) 2023; 196 |
References_xml | – volume: 181 year: 2022 ident: bb0125 article-title: Drug-preloadable methacrylated gelatin microspheres fabricated using an aqueous two-phase system publication-title: Eur. Polym. J. – volume: 27 year: 2017 ident: bb0105 article-title: Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration publication-title: Adv. Funct. Mater. – volume: 7 start-page: 10376 year: 2016 ident: bb0010 article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects publication-title: Nat. Commun. – volume: 10 year: 2021 ident: bb0025 article-title: Accelerated bone regeneration by MOF modified multifunctional membranes through enhancement of osteogenic and angiogenic performance publication-title: Adv. Healthc. Mater. – volume: 7 start-page: 45655 year: 2017 ident: bb0160 article-title: Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold publication-title: Sci. Rep. – volume: 213 start-page: 317 year: 2022 end-page: 327 ident: bb0095 article-title: Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing publication-title: Int. J. Biol. Macromol. – volume: 23 start-page: 89 year: 2020 end-page: 100 ident: bb0235 article-title: Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering publication-title: J. Orthop. Transl. – volume: 93 start-page: 93 year: 2019 end-page: 104 ident: bb0190 article-title: A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation publication-title: J. Mech. Behav. Biomed. Mater. – volume: 110 year: 2020 ident: bb0060 article-title: Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration publication-title: Mater. Sci. Eng. C – volume: 95 start-page: 1 year: 2019 end-page: 10 ident: bb0200 article-title: In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair publication-title: Mater. Sci. Eng. C – volume: 15 start-page: 119 year: 2024 ident: bb0030 article-title: All-in-one porous membrane enables full protection in guided bone regeneration publication-title: Nat. Commun. – volume: 30 start-page: 1909954 year: 2020 ident: bb0210 article-title: Mussel inspired hydrogels for self-dhesive bioelectronics publication-title: Adv. Funct. Mater. – volume: 234 year: 2022 ident: bb0070 article-title: Development and fabrication of co-axially electrospun biomimetic periosteum with a decellularized periosteal ECM shell/PCL core structure to promote the repair of critical-sized bone defects publication-title: Compos. Part B-Eng. – volume: 35 start-page: 9395 year: 2014 end-page: 9405 ident: bb0195 article-title: Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes publication-title: Biomaterials – volume: 6 start-page: 7402 year: 2015 ident: bb0045 article-title: General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis publication-title: Nat. Commun. – volume: 221 start-page: 91 year: 2022 end-page: 107 ident: bb0110 article-title: Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 8 start-page: 2562 year: 2020 end-page: 2572 ident: bb0135 article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress publication-title: J. Mater. Chem. B – volume: 33 start-page: 41 year: 2022 end-page: 54 ident: bb0220 article-title: Periosteum and development of the tissue-engineered periosteum for guided bone regeneration publication-title: J. Orthop. Transl. – volume: 121 start-page: 193 year: 2017 end-page: 204 ident: bb0230 article-title: Periosteum tissue engineering in an orthotopic in vivo platform publication-title: Biomaterials – volume: 36 start-page: 18 year: 2022 end-page: 32 ident: bb0015 article-title: Biomimicking design of artificial periosteum for promoting bone healing publication-title: J. Orthop. Transl. – volume: 20 start-page: 277 year: 2014 end-page: 293 ident: bb0050 article-title: Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering publication-title: Tissue Eng. Part B Rev. – volume: 12 start-page: 655 year: 2017 end-page: 664 ident: bb0180 article-title: Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment publication-title: Chem. Asian J. – volume: 80 start-page: 484 year: 2017 end-page: 493 ident: bb0185 article-title: Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration publication-title: Mater. Sci. Eng. C – volume: 268 year: 2021 ident: bb0020 article-title: Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration publication-title: Biomaterials – volume: 240 year: 2023 ident: bb0090 article-title: Biomedical applications of chitosan/silk fibroin composites: a review publication-title: Int. J. Biol. Macromol. – volume: 73 start-page: 537 year: 2017 end-page: 543 ident: bb0165 article-title: Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering publication-title: Mater. Eng. C Mater. Biol. Appl. – volume: 51 start-page: 9127 year: 2022 ident: bb0215 article-title: Bio-macromolecular design roadmap towards tough bioadhesives publication-title: Chem. Soc. Rev. – volume: 29 year: 2019 ident: bb0035 article-title: Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy publication-title: Adv. Funct. Mater. – volume: 11 start-page: 90 year: 2022 end-page: 106 ident: bb0240 article-title: Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size publication-title: Bioact. Mater. – volume: 194 year: 2023 ident: bb0055 article-title: Controlled preparation of polyimide/polysulfone amide (PI/PSA) porous micro-nano fiber membranes by microemulsion electrospinning for excellent thermal insulation publication-title: Eur. Polym. J. – volume: 99 start-page: 57 year: 2019 end-page: 67 ident: bb0115 article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches publication-title: Mater. Sci. Eng. C – volume: 6 start-page: 6737 year: 2020 end-page: 6747 ident: bb0140 article-title: Biomimetic membranes of methacrylated gelatin/nanohydroxyapatite/poly(L-lactic acid) for enhanced bone regeneration publication-title: ACS Biomater. Sci. Eng. – volume: 349 start-page: 538 year: 2015 end-page: 548 ident: bb0205 article-title: Mineralization on polylactide/gelatin composite nanofibers using simulated body fluid containing amino acid publication-title: Appl. Surf. Sci. – volume: 10 start-page: 2101195 year: 2021 ident: bb0065 article-title: Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration publication-title: Adv. Healthc. Mater. – volume: 164 start-page: 976 year: 2020 end-page: 985 ident: bb0120 article-title: Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications publication-title: Int. J. Biol. Macromol. – volume: 7 start-page: 3321 year: 2021 end-page: 3331 ident: bb0225 article-title: Poly-epsilon-caprolactone/whitlockite electrospun bionic membrane with an osteogenic-angiogenic coupling effect for periosteal regeneration publication-title: ACS Biomater. Sci. Eng. – volume: 228 start-page: 360 year: 2018 end-page: 364 ident: bb0145 article-title: Fabrication and assembly of porous micropatterned scaffolds for modular tissue engineering publication-title: Mater. Lett. – volume: 118 start-page: 382 year: 2019 end-page: 392 ident: bb0080 article-title: Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid publication-title: Eur. Polym. J. – volume: 238 year: 2023 ident: bb0040 article-title: Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: in vitro and in vivo studies publication-title: Int. J. Biol. Macromol. – volume: 4 start-page: 1268 year: 2015 end-page: 1285 ident: bb0005 article-title: Biomaterials for bone regenerative engineering publication-title: Adv. Healthc. Mater. – volume: 196 year: 2023 ident: bb0085 article-title: Silk based bio–inks for medical applications publication-title: Eur. Polym. J. – volume: 235 year: 2023 ident: bb0100 article-title: Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects publication-title: Int. J. Biol. Macromol. – volume: 14 year: 2022 ident: bb0130 article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration publication-title: Biofabrication – volume: 30 year: 2020 ident: bb0175 article-title: Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness publication-title: Adv. Funct. Mater. – volume: 59 start-page: 2071 year: 2019 end-page: 2075 ident: bb0170 article-title: Organic-inorganic copolymerization for a homogenous composite without an interphase boundary publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1612 year: 2011 end-page: 1631 ident: bb0075 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. – volume: 27 start-page: 2907 year: 2006 end-page: 2915 ident: bb0155 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials – volume: 7 start-page: 2384 year: 2011 end-page: 2393 ident: bb0150 article-title: Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels publication-title: Acta Biomater. – volume: 14 issue: 4 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0130 article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration publication-title: Biofabrication doi: 10.1088/1758-5090/ac8dc7 – volume: 36 start-page: 18 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0015 article-title: Biomimicking design of artificial periosteum for promoting bone healing publication-title: J. Orthop. Transl. – volume: 10 issue: 6 year: 2021 ident: 10.1016/j.ijbiomac.2024.130380_bb0025 article-title: Accelerated bone regeneration by MOF modified multifunctional membranes through enhancement of osteogenic and angiogenic performance publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001369 – volume: 15 start-page: 119 issue: 1 year: 2024 ident: 10.1016/j.ijbiomac.2024.130380_bb0030 article-title: All-in-one porous membrane enables full protection in guided bone regeneration publication-title: Nat. Commun. doi: 10.1038/s41467-023-43476-9 – volume: 181 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0125 article-title: Drug-preloadable methacrylated gelatin microspheres fabricated using an aqueous two-phase system publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2022.111671 – volume: 51 start-page: 9127 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0215 article-title: Bio-macromolecular design roadmap towards tough bioadhesives publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00618A – volume: 7 start-page: 3321 issue: 7 year: 2021 ident: 10.1016/j.ijbiomac.2024.130380_bb0225 article-title: Poly-epsilon-caprolactone/whitlockite electrospun bionic membrane with an osteogenic-angiogenic coupling effect for periosteal regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c00426 – volume: 93 start-page: 93 year: 2019 ident: 10.1016/j.ijbiomac.2024.130380_bb0190 article-title: A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.02.003 – volume: 7 start-page: 10376 year: 2016 ident: 10.1016/j.ijbiomac.2024.130380_bb0010 article-title: Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects publication-title: Nat. Commun. doi: 10.1038/ncomms10376 – volume: 196 year: 2023 ident: 10.1016/j.ijbiomac.2024.130380_bb0085 article-title: Silk based bio–inks for medical applications publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2023.112255 – volume: 7 start-page: 45655 year: 2017 ident: 10.1016/j.ijbiomac.2024.130380_bb0160 article-title: Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold publication-title: Sci. Rep. doi: 10.1038/srep45655 – volume: 238 year: 2023 ident: 10.1016/j.ijbiomac.2024.130380_bb0040 article-title: Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: in vitro and in vivo studies publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.124078 – volume: 228 start-page: 360 year: 2018 ident: 10.1016/j.ijbiomac.2024.130380_bb0145 article-title: Fabrication and assembly of porous micropatterned scaffolds for modular tissue engineering publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.06.045 – volume: 10 start-page: 2101195 issue: 21 year: 2021 ident: 10.1016/j.ijbiomac.2024.130380_bb0065 article-title: Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202101195 – volume: 7 start-page: 2384 issue: 6 year: 2011 ident: 10.1016/j.ijbiomac.2024.130380_bb0150 article-title: Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.01.016 – volume: 6 start-page: 1612 issue: 10 year: 2011 ident: 10.1016/j.ijbiomac.2024.130380_bb0075 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.379 – volume: 35 start-page: 9395 issue: 34 year: 2014 ident: 10.1016/j.ijbiomac.2024.130380_bb0195 article-title: Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.060 – volume: 4 start-page: 1268 issue: 9 year: 2015 ident: 10.1016/j.ijbiomac.2024.130380_bb0005 article-title: Biomaterials for bone regenerative engineering publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201400760 – volume: 213 start-page: 317 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0095 article-title: Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.05.123 – volume: 33 start-page: 41 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0220 article-title: Periosteum and development of the tissue-engineered periosteum for guided bone regeneration publication-title: J. Orthop. Transl. – volume: 235 year: 2023 ident: 10.1016/j.ijbiomac.2024.130380_bb0100 article-title: Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.123861 – volume: 30 issue: 6 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0175 article-title: Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908556 – volume: 59 start-page: 2071 issue: 5 year: 2019 ident: 10.1016/j.ijbiomac.2024.130380_bb0170 article-title: Organic-inorganic copolymerization for a homogenous composite without an interphase boundary publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913828 – volume: 73 start-page: 537 year: 2017 ident: 10.1016/j.ijbiomac.2024.130380_bb0165 article-title: Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering publication-title: Mater. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2016.12.116 – volume: 8 start-page: 2562 issue: 13 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0135 article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02643F – volume: 20 start-page: 277 issue: 4 year: 2014 ident: 10.1016/j.ijbiomac.2024.130380_bb0050 article-title: Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2013.0276 – volume: 110 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0060 article-title: Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110670 – volume: 99 start-page: 57 year: 2019 ident: 10.1016/j.ijbiomac.2024.130380_bb0115 article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.079 – volume: 27 issue: 2 year: 2017 ident: 10.1016/j.ijbiomac.2024.130380_bb0105 article-title: Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604617 – volume: 80 start-page: 484 year: 2017 ident: 10.1016/j.ijbiomac.2024.130380_bb0185 article-title: Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.06.016 – volume: 6 start-page: 6737 issue: 12 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0140 article-title: Biomimetic membranes of methacrylated gelatin/nanohydroxyapatite/poly(L-lactic acid) for enhanced bone regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00972 – volume: 121 start-page: 193 year: 2017 ident: 10.1016/j.ijbiomac.2024.130380_bb0230 article-title: Periosteum tissue engineering in an orthotopic in vivo platform publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.016 – volume: 349 start-page: 538 year: 2015 ident: 10.1016/j.ijbiomac.2024.130380_bb0205 article-title: Mineralization on polylactide/gelatin composite nanofibers using simulated body fluid containing amino acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.047 – volume: 23 start-page: 89 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0235 article-title: Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering publication-title: J. Orthop. Transl. – volume: 234 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0070 article-title: Development and fabrication of co-axially electrospun biomimetic periosteum with a decellularized periosteal ECM shell/PCL core structure to promote the repair of critical-sized bone defects publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2022.109620 – volume: 164 start-page: 976 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0120 article-title: Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.07.179 – volume: 268 year: 2021 ident: 10.1016/j.ijbiomac.2024.130380_bb0020 article-title: Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120561 – volume: 12 start-page: 655 issue: 6 year: 2017 ident: 10.1016/j.ijbiomac.2024.130380_bb0180 article-title: Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment publication-title: Chem. Asian J. doi: 10.1002/asia.201601592 – volume: 6 start-page: 7402 year: 2015 ident: 10.1016/j.ijbiomac.2024.130380_bb0045 article-title: General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis publication-title: Nat. Commun. doi: 10.1038/ncomms8402 – volume: 27 start-page: 2907 issue: 15 year: 2006 ident: 10.1016/j.ijbiomac.2024.130380_bb0155 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 118 start-page: 382 year: 2019 ident: 10.1016/j.ijbiomac.2024.130380_bb0080 article-title: Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.05.040 – volume: 221 start-page: 91 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0110 article-title: Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.08.171 – volume: 29 issue: 2 year: 2019 ident: 10.1016/j.ijbiomac.2024.130380_bb0035 article-title: Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802852 – volume: 95 start-page: 1 year: 2019 ident: 10.1016/j.ijbiomac.2024.130380_bb0200 article-title: In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.10.041 – volume: 11 start-page: 90 year: 2022 ident: 10.1016/j.ijbiomac.2024.130380_bb0240 article-title: Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size publication-title: Bioact. Mater. – volume: 194 year: 2023 ident: 10.1016/j.ijbiomac.2024.130380_bb0055 article-title: Controlled preparation of polyimide/polysulfone amide (PI/PSA) porous micro-nano fiber membranes by microemulsion electrospinning for excellent thermal insulation publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2023.112170 – volume: 30 start-page: 1909954 issue: 25 year: 2020 ident: 10.1016/j.ijbiomac.2024.130380_bb0210 article-title: Mussel inspired hydrogels for self-dhesive bioelectronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909954 – volume: 240 year: 2023 ident: 10.1016/j.ijbiomac.2024.130380_bb0090 article-title: Biomedical applications of chitosan/silk fibroin composites: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.124407 |
SSID | ssj0006518 |
Score | 2.4748793 |
Snippet | By mimicking in vivo bionic microenvironment and promoting osteogenic differentiation, the hybrid organic-inorganic nanofibrous membranes provide promising... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130380 |
SubjectTerms | animal models biocompatibility biomimetics bone formation Bone regeneration fibroins gelatin hydroxyapatite Methacrylated gelatine nanofibers Silk fibroin |
Title | Silk fibroin/methacrylated gelatine/hydroxyapatite biomimetic nanofibrous membranes for guided bone regeneration |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2024.130380 https://www.ncbi.nlm.nih.gov/pubmed/38395277 https://www.proquest.com/docview/2934271090 https://www.proquest.com/docview/3153614507 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4heqAXREtbAhQtElfjZB_2-oiiorQVXACJ22qfwSFxopAcculv74wflEptOfRoa8dezbfa-db-ZoaQM8u8UC4WiVTYwox7lViI2klhhXMWGIBx-EH_6job3Ylv9_J-iwy7XBiUVbZ7f7On17t1eydtvZkuyjJFWRKEJ45FuoAlc0z4FSLHVX7-45fMI5P1Nz4cnODoF1nCk_NygknuBksZMoGNkTmWh_xzgPobAa0D0eUe2W0ZJL1oJvmObIXqPdkZdo3b9snippw-0gjn4DmcerFFtHHLzRRIpafjWvtWhfRh41HAYlBQvQoUJ1jOMKGRVqaa18brJzoLMzhNw25IgdvS8br08Aw7rwJdhnFdsBpx_UDuLr_cDkdJ21ghceCrVRIkVslxueeKCcv6tpCCBT7IMlU45pVyvuhbYXwUBjiR8tFG4G1535goZRzwj2S7gncdEJoH5mOwuQUEEA5rg2H9IqpBNNLJrEdk503t2qrj2Pxiqjt52UR3KGhEQTco9Ej6bLdo6m68alF0YOnfVpCG4PCq7WmHrgaw8J8J-Bb8rIENCYZ61X-M4RA1gOUAs-6RT83SeJ4zBwIqWZ4f_sfsjshbvGr0Qsdke7Vch89AhVb2pF7rJ-TNxdfvo-ufQh0Kxg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6k6ZAuQd910gcLdFVkU6REjYXRwG2TLE2AbASfrlxbNhx7yJLfnjs90hZom6GrxJOI-yjeR-rjHcAHy71QLpaJVFTCLPMqsRi1k9IK5ywyAONoQ__0LJ9ciC-X8nIHxv1ZGJJVdnN_O6c3s3V3Je28ma6qKiVZEoanjJJ0IUvO1AN4KPDzpTIGRzc_dR65bDb5qHVCzX85Jjw7qmZ0yt1QLkMuqDJyRvkh_xyh_sZAm0h0_Bj2OwrJPra9fAI7oX4Ke-O-ctszWH2r5j9YxIXwEpe9VCPauPX1HFmlZ9NG_FaH9Pu1JwWLIUX1JjDqYLWgE42sNvWyMd5esUVY4HIap0OG5JZNt5XHZ9hlHdg6TJuM1QTsc7g4_nQ-niRdZYXEobM2SZCUJscVHt0lLB_aUgoeslGeq9Jxr5Tz5dAK46MwSIqUjzYicSuGxkQp4yh7Abs1vusVsCJwH4MtLEJAeFgbDB-WUY2ikU7mA5C9N7Xr0o5T9Yu57vVlM92joAkF3aIwgPTObtUm3rjXouzB0r8NIY3R4V7b9z26GsGinyboW_SzRjokOAlW_9Emw7CBNAep9QBetkPjrs8ZMlDJi-LgP3r3DvYm56cn-uTz2ddDeER3WvHQa9jdrLfhDfKijX3bjPtbPIQMVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+fibroin%2Fmethacrylated+gelatine%2Fhydroxyapatite+biomimetic+nanofibrous+membranes+for+guided+bone+regeneration&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Li%2C+Bo&rft.au=Chen%2C+Ying&rft.au=He%2C+Jisu&rft.au=Shu%2C+Yue&rft.date=2024-04-01&rft.issn=0141-8130&rft.volume=263&rft.spage=130380&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.130380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2024_130380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |