On the performance of proton-transfer-reaction mass spectrometry for breath-relevant gas matrices
The accuracy of quantitative volatile organic compound (VOC) detection by proton-transfer-reaction mass spectrometry (PTR-MS) is substantially enhanced if the instrument is calibrated. Although quantification of a compound is in principle possible by mathematical methods based on kinetic theory, the...
Saved in:
Published in | Measurement science & technology Vol. 24; no. 12; pp. 1 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The accuracy of quantitative volatile organic compound (VOC) detection by proton-transfer-reaction mass spectrometry (PTR-MS) is substantially enhanced if the instrument is calibrated. Although quantification of a compound is in principle possible by mathematical methods based on kinetic theory, the underlying picture can become complicated depending on the gas matrix, leading to error. A simple, reliable method to overcome this is to calibrate the instrument using standard gas mixtures containing VOCs at known concentrations, which enables the compound-dependent sensitivity of the instrument to be determined. A dynamic gas calibration unit was developed to generate variable but known quantities of selected standard compounds in a carrier gas of variable relative humidity (RH; up to 100% at 37 °C) and CO2 content (≤10%v) to reflect the changing conditions of a breath-gas sample matrix. Besides individual compound sensitivities, calibration also yields the limits of detection and quantification of the experimental method. Extensive calibrations of PTR-MS with several breath-relevant compounds were made at varying RH and CO2. Gas matrix effects of several compounds were negligible when appropriate mass-dependent transmission correction and normalization to the primary ions (m z 21 and m z 37) were applied. Two compounds are discussed in particular, namely acetaldehyde, which interferes with a CO2-related background, and formaldehyde, which shows a nonlinear dependence on sample gas humidity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0957-0233 1361-6501 |
DOI: | 10.1088/0957-0233/24/12/125003 |