Structural characterization of a low molecular weight Bletilla striata polysaccharide and antitumor activity on H22 tumor-bearing mice

In this study, a novel low molecular weight polysaccharide (named LMW-BSP) was extracted from Bletilla striata at 4 °C. The results of structural characteristics analysis showed that LMW-BSP was a 23 kDa neutral polysaccharide contained glucose and mannose at a molar ratio of 1.00:1.26. Structural i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 205; pp. 553 - 562
Main Authors Liu, Chao, Dai, Ke-yao, Ji, Hai-yu, Jia, Xiao-yu, Liu, An-jun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a novel low molecular weight polysaccharide (named LMW-BSP) was extracted from Bletilla striata at 4 °C. The results of structural characteristics analysis showed that LMW-BSP was a 23 kDa neutral polysaccharide contained glucose and mannose at a molar ratio of 1.00:1.26. Structural investigations of the periodate oxidation studies, Smith-degradation as well as methylation were performed, and combined with 1D and 2D NMR spectroscopy, the main chain residues sequence of LMW-BSP was concluded to be: α-D-Manp-(1 → 3)-β-D-Manp-(1 → [4)-β-D-Glcp-(1]2 → 4)-β-D-Manp-(1 → 3)-β-D-Manp-(1→. Moreover, the antitumor activity of LMW-BSP was evaluated in H22 tumor-bearing mice. And the results suggested that LMW-BSP could effectively improve immune cells activities and lymphocytes subsets proportions dose-dependently in tumor-bearing mice, leading to the apoptosis of H22 cells via G1 phase arrested. LMW-BSP inhibited tumor growth and exhibited antitumor effects in vivo. And it supported considering the novel polysaccharide as a potential drug component in hepatocellular carcinoma treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2022.02.073