Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization
The production of functional nanostructured materials starting from cheap natural precursors using environmentally friendly processes is a highly attractive subject in material chemistry today. Recently, much attention has been focused on the use of plant biomass to produce functional carbonaceous m...
Saved in:
Published in | Chemical Society reviews Vol. 39; no. 1; pp. 103 - 116 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The production of functional nanostructured materials starting from cheap natural precursors using environmentally friendly processes is a highly attractive subject in material chemistry today. Recently, much attention has been focused on the use of plant biomass to produce functional carbonaceous materials, encompassing economic, environmental and social issues. Besides the classical route to produce activated carbons from agricultural side products, the hydrothermal carbonization (HTC) process shows clear advantages in that it can generate a variety of cheap and sustainable carbonaceous materials with attractive nanostructure and functionalization patterns for a wide range of applications. In this tutorial review we present the latest developments in this traditional but recently invigorated technique. It will be shown that HTC does not only access carbonaceous materials under comparatively mild hydrothermal conditions, but also replaces the more technical and structurally well-defined charring by a controlled chemical process. It will be shown that this makes it possible to tailor the final structure with the tools of colloid and polymer science, leading to very different morphologies with miscellaneous applications, including modern carbon nanocomposites and hybrids. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0306-0012 1460-4744 1460-4744 |
DOI: | 10.1039/B819318P |