Numerical investigation of closures for interface forces acting on single air-bubbles in water using Volume of Fluid and Front Tracking models
Closures for the drag and virtual mass forces acting on a single air bubble rising in initially quiescent pure water have been numerically investigated using direct numerical simulation techniques. A 3D Front Tracking model was used and the results were compared with simulation results obtained with...
Saved in:
Published in | Chemical engineering science Vol. 60; no. 22; pp. 6169 - 6175 |
---|---|
Main Authors | , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Closures for the drag and virtual mass forces acting on a single air bubble rising in initially quiescent pure water have been numerically investigated using direct numerical simulation techniques. A 3D Front Tracking model was used and the results were compared with simulation results obtained with a 2D Volume of Fluid model to assess the influence of the third dimension. In the simulations realistic values were taken for the physical properties, i.e., a density ratio of 800. The computed time-averaged terminal rise velocity and mean aspect ratio for individual air bubbles ranging in equivalent diameter from 1 to 10
mm rising in pure water compare well with available experimental data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0009-2509 1873-4405 |
DOI: | 10.1016/j.ces.2005.03.048 |