A Climatology of Atmospheric Rivers in New Zealand
The occurrence of extreme precipitation events in New Zealand regularly results in devastating impacts to the local society and environment. An automated atmospheric river (AR) detection technique (ARDT) is applied to construct a climatology (1979–2019) of extreme midlatitude moisture fluxes conduci...
Saved in:
Published in | Journal of climate Vol. 34; no. 11; pp. 4383 - 4402 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
American Meteorological Society
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The occurrence of extreme precipitation events in New Zealand regularly results in devastating impacts to the local society and environment. An automated atmospheric river (AR) detection technique (ARDT) is applied to construct a climatology (1979–2019) of extreme midlatitude moisture fluxes conducive to extreme precipitation. A distinct seasonality exists in AR occurrence aligning with seasonal variations in the midlatitude jet streams. The formation of the Southern Hemisphere winter split jet enables AR occurrence to persist through all seasons in northern regions of New Zealand, while southern regions of the country exhibit a substantial (50%) reduction in AR occurrence as the polar jet shifts southward during the cold season. ARs making landfall on the western coast of New Zealand (90% of all events) are characterized by a dominant northwesterly moisture flux associated with a distinct dipole pressure anomaly, with low pressure to the southwest and high pressure to the northeast of New Zealand. Precipitation totals during AR events increase with AR rank (five-point scale) throughout the country, with the most substantial increase on the windward side of the Southern Alps (South Island). The largest events (rank 5ARs) produce 3-day precipitation totals exceeding 1000 mm. ARs account for up to 78% of total precipitation and up to 94% of extreme precipitation on the west coast of the South Island. Assessment of the multiscale atmospheric processes associated with AR events governing extreme precipitation in the Southern Alps of New Zealand should remain a priority given their hydrological significance and impact on people and infrastructure. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli-d-20-0664.1 |