The effects of triphenylphosphate and recorcinolbis(diphenylphosphate) on the thermal degradation of polycarbonate in air

The thermal degradation of polycarbonate/triphenylphosphate (PC/TPP) and PC/resocinolbis(diphenylphosphate) (PC/RDP) in air has been studied using TGA/FTIR and GC/MS. In PC/phosphate blends, the phosphate stabilizes the carbonate group of polycarbonate from alcoholysis between the alcohol products o...

Full description

Saved in:
Bibliographic Details
Published inThermochimica acta Vol. 433; no. 1; pp. 1 - 12
Main Authors Jang, Bok Nam, Wilkie, Charles A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2005
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The thermal degradation of polycarbonate/triphenylphosphate (PC/TPP) and PC/resocinolbis(diphenylphosphate) (PC/RDP) in air has been studied using TGA/FTIR and GC/MS. In PC/phosphate blends, the phosphate stabilizes the carbonate group of polycarbonate from alcoholysis between the alcohol products of polycarbonate degradation and the carbonate linkage. Thus, the evolution of bisphenol A, which is mainly produced via hydrolysis/alcoholysis of the carbonate linkage, is significantly reduced, while, the evolution of various alkylphenols and diarylcarbonates increases. The bonds that are broken first in the thermal degradation of both the carbonate and isopropylidene linkages of polycarbonate are the weakest bonds in each, when a phosphate is present. Triphenylphosphate and resocinolbis(diphenyl-phosphate), even though they exhibit a significant difference in their volatilization temperature, appear to play a similar role in the degradation pathway of polycarbonate.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0040-6031
1872-762X
DOI:10.1016/j.tca.2005.01.071