Physics-Based Artificial Neural Network Assisting in Extracting Transient Properties of Extrinsically Triggering Photoconductive Semiconductor Switches
In this paper, a physics-based ANN assisting method for extracting transient properties of extrinsically triggering photoconductive semiconductor switches (ET-PCSSs) is proposed. It exploits the nonlinear mapping of ANN between transient current (input) and doping concentration (output). According t...
Saved in:
Published in | Micromachines (Basel) Vol. 15; no. 8; p. 1003 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a physics-based ANN assisting method for extracting transient properties of extrinsically triggering photoconductive semiconductor switches (ET-PCSSs) is proposed. It exploits the nonlinear mapping of ANN between transient current (input) and doping concentration (output). According to the basic laws of photoelectric device operating, two types of ANN models are constructed by gaussian and polynomial fitting. The mean absolute error (MAE) of forecasting transient photocurrent can be less than 10 A under low triggering optical powers, which verifies the feasibility of ANN assisting TCAD applied to PCSSs. The results are comparable to computation by Mixed-Mode simulation, yet even thousands of seconds of CPU runtime cost are saved in every period. To improve the robustness of the Poly-ANN predictor, Bayesian optimization (BO) is implemented for minimizing the curl deviation of photocurrent-time curves. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi15081003 |