Power-Electronics-Based Solutions for Plug-in Hybrid Electric Vehicle Energy Storage and Management Systems
Batteries, ultracapacitors (UCs), and fuel cells are widely being proposed for electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) as an electric power source or an energy storage unit. In general, the design of an intelligent control strategy for coordinated power distribution is a critical issu...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 57; no. 2; pp. 608 - 616 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Batteries, ultracapacitors (UCs), and fuel cells are widely being proposed for electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) as an electric power source or an energy storage unit. In general, the design of an intelligent control strategy for coordinated power distribution is a critical issue for UC-supported PHEV power systems. Implementation of several control methods has been presented in the past, with the goal of improving battery life and overall vehicle efficiency. It is clear that the control objectives vary with respect to vehicle velocity, power demand, and state of charge of both the batteries and UCs. Hence, an optimal control strategy design is the most critical aspect of an all-electric/plug-in hybrid electric vehicle operational characteristic. Although much effort has been made to improve the life of PHEV energy storage systems (ESSs), including research on energy storage device chemistries, this paper, on the contrary, highlights the fact that the fundamental problem lies within the design of power-electronics-based energy-management converters and the development of smarter control algorithms. This paper initially discusses battery and UC characteristics and then goes on to provide a detailed comparison of various proposed control strategies and proposes the use of precise power electronic converter topologies. Finally, this paper summarizes the benefits of the various techniques and suggests the most viable solutions for on-board power management, more specific to PHEVs with multiple/hybrid ESSs. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2009.2032195 |