Fungi, host immune response, and tumorigenesis
Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectio...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 321; no. 2; pp. G213 - G222 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda
American Physiological Society
01.08.2021
|
Series | Microbiome-Based Therapeutics and Their Physiological Effects |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host’s immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant (“cold”) tumor microenvironment to an immunocompetent (“hot”) milieu that is effective in eliminating tumorigenesis. |
---|---|
AbstractList | Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host’s immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant (“cold”) tumor microenvironment to an immunocompetent (“hot”) milieu that is effective in eliminating tumorigenesis. Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host’s immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant (“cold”) tumor microenvironment to an immunocompetent (“hot”) milieu that is effective in eliminating tumorigenesis. Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host's immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant ("cold") tumor microenvironment to an immunocompetent ("hot") milieu that is effective in eliminating tumorigenesis.Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host's immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant ("cold") tumor microenvironment to an immunocompetent ("hot") milieu that is effective in eliminating tumorigenesis. |
Author | Saxena, Anjana Patel, Rohin Patel, Mintoo Miller, George Saxena, Deepak Elaskandrany, Miar |
Author_xml | – sequence: 1 givenname: Miar surname: Elaskandrany fullname: Elaskandrany, Miar organization: Biology Department, Brooklyn College, City University of New York, New York, New York, Macaulay Honors Academy, Brooklyn College, City University of New York, New York, New York – sequence: 2 givenname: Rohin surname: Patel fullname: Patel, Rohin organization: Biology Department, Brooklyn College, City University of New York, New York, New York – sequence: 3 givenname: Mintoo surname: Patel fullname: Patel, Mintoo organization: Natural Sciences, South Florida State College, Avon Park, Florida – sequence: 4 givenname: George surname: Miller fullname: Miller, George organization: New York City Health & Hospitals (Woodhull), New York, New York – sequence: 5 givenname: Deepak surname: Saxena fullname: Saxena, Deepak organization: Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, Department of Surgery, New York University School of Medicine, New York, New York – sequence: 6 givenname: Anjana orcidid: 0000-0002-5506-5827 surname: Saxena fullname: Saxena, Anjana organization: Biology Department, Brooklyn College, City University of New York, New York, New York, Biology and Biochemistry Programs, Graduate Center, City University of New York (CUNY), New York, New York |
BookMark | eNp1kc1LxDAQxYOsuB9691jw4mG7TtKkbS6CLK4KC172HrJt2s3SJjVpBf97sx8ICp4GZn7vMTNvikbGGoXQLYYFxow8yH1X6wUAELYgQPAFmoQ2iTGj2QhNAPMkxjnLxmjq_T5wjGB8hcYJJQlOOJmgxWowtZ5HO-v7SLftYFTklO-s8WoeSVNG_dBap2tllNf-Gl1WsvHq5lxnaLN63ixf4_X7y9vyaR0XFHAfyyzLZFYwSSRPuIQEcgkclzQrOHBK83wLFGhZUp4ApJXKKK9yqWTJ0pxVyQw9nmy7YduqslCmd7IRndOtdF_CSi1-T4zeidp-ipxiwECDwf3ZwNmPQfletNoXqmmkUXbwgjDKCYQ3HNC7P-jeDs6E6wKV8pSHJ_JAwYkqnPXeqepnGQzikIU4ZiGOWYhDFkGS_pEUupe9toeVdfO_8BuzWY5i |
CitedBy_id | crossref_primary_10_3892_ol_2023_14128 crossref_primary_10_1002_imt2_170 crossref_primary_10_3390_ijms232213750 crossref_primary_10_20473_jr_v10_I_3_2024_265_271 crossref_primary_10_1038_s41598_024_65730_w crossref_primary_10_3390_cancers15123143 crossref_primary_10_1016_j_ccell_2023_08_012 crossref_primary_10_3390_nu13124425 crossref_primary_10_1080_07357907_2024_2301733 crossref_primary_10_1038_s43018_023_00602_2 crossref_primary_10_1016_j_ccell_2022_01_009 crossref_primary_10_3390_cancers15092629 crossref_primary_10_1016_j_cell_2022_09_013 |
Cites_doi | 10.3390/cancers12082331 10.1053/j.gastro.2018.12.045 10.1155/2018/7946431 10.3892/or.2013.2410 10.3389/fcimb.2020.00112 10.1053/j.gastro.2017.06.004 10.1158/1535-7163.MCT-06-0686 10.1080/21505594.2016.1247140 10.1111/imm.12046 10.1101/cshperspect.a019802 10.1016/j.ccell.2020.02.008 10.1016/j.chom.2020.04.018 10.6001/actamedica.v25i4.3929 10.1159/000488539 10.1016/j.semcancer.2014.04.004 10.1007/s00253-021-11264-4 10.1186/s12885-019-6115-1 10.1038/s41568-019-0155-3 10.1371/journal.ppat.1000713 10.3389/fimmu.2018.01878 10.1016/j.mehy.2020.109648 10.1016/j.cell.2019.07.008 10.3748/wjg.v21.i40.11450 10.1111/nmo.13891 10.1038/s41575-018-0011-z 10.2165/00003495-200161001-00001 10.1152/ajpgi.00118.2019 10.3390/jof7050324 10.1158/2159-8290.CD-19-0094 10.1016/j.ccell.2018.03.015 10.3389/fimmu.2017.01909 10.1016/j.pan.2019.11.006 10.1371/journal.pone.0083744 10.18632/oncotarget.16717 10.18632/oncotarget.3109 10.1126/sciadv.aav6789 10.1371/journal.pone.0004834 10.1038/nature06244 10.1016/j.immuni.2018.08.018 10.1016/j.canlet.2013.08.016 10.1038/nrdp.2016.22 10.1136/gutjnl-2018-317178 10.1038/s41435-019-0071-2 10.1111/odi.12392 10.1016/S1473-3099(21)00397-2 10.1016/j.cyto.2011.08.031 10.1016/j.canlet.2015.12.020 10.1155/2015/284680 10.3892/ol.2020.11441 10.1371/journal.pone.0066019 10.1155/2011/267539 10.1155/2012/465717 10.1016/j.coviro.2019.06.003 10.1016/j.pharmthera.2017.02.013 10.1097/MPA.0000000000000941 10.1038/nature13684 10.1126/science.aah5043 10.15252/embj.2020105320 10.1002/eji.201948322 10.3389/fimmu.2019.03070 10.1002/wsbm.1438 10.1038/s41586-019-1238-8 10.1053/j.gastro.2015.09.004 10.1016/j.cell.2020.05.048 10.1371/journal.ppat.1008353 10.1126/science.aay9189 10.1093/mmy/myx134 10.1016/j.immuni.2015.10.023 10.1038/nrgastro.2017.88 10.1128/CMR.00021-11 10.1016/j.biopha.2016.09.082 10.1016/j.coviro.2019.05.007 10.1038/s41586-019-1608-2 10.1038/s41571-020-0363-5 10.1080/19490976.2017.1379637 10.1038/nature23910 10.1016/j.cell.2016.11.018 10.1158/2159-8290.CD-17-1134 10.3389/fphys.2019.01202 10.15171/mejdd.2018.126 10.1186/s12943-019-1117-9 10.1016/j.semcancer.2020.06.006 10.1038/nri.2017.55 10.1371/journal.pgen.1005614 10.1007/s11046-019-00413-z 10.1111/cas.13766 10.1186/s40168-017-0373-4 10.1126/sciimmunol.abb5168 10.7150/thno.55209 10.1158/1078-0432.CCR-16-2318 10.1016/j.trecan.2020.01.004 10.1053/j.gastro.2012.12.042 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Aug 2021 Copyright © 2021 the American Physiological Society. 2021 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Aug 2021 – notice: Copyright © 2021 the American Physiological Society. 2021 American Physiological Society |
DBID | AAYXX CITATION K9. 7X8 5PM |
DOI | 10.1152/ajpgi.00025.2021 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | MYCOBIOME AND CANCER |
EISSN | 1522-1547 |
EndPage | G222 |
ExternalDocumentID | PMC8410104 10_1152_ajpgi_00025_2021 |
GrantInformation_xml | – fundername: ; ; grantid: 63814-00 51 – fundername: ; ; grantid: W81XWH-19-1-0605 – fundername: ; ; grantid: CA206105 |
GroupedDBID | --- 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP CITATION E3Z EBS EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK K9. 7X8 5PM |
ID | FETCH-LOGICAL-c401t-a777a7c5a2a939a0308a091d47c9094488b0404dd493006fe749f8aead5685f3 |
ISSN | 0193-1857 1522-1547 |
IngestDate | Thu Aug 21 18:03:02 EDT 2025 Fri Jul 11 01:12:04 EDT 2025 Mon Jun 30 08:08:23 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Tue Jul 01 03:43:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c401t-a777a7c5a2a939a0308a091d47c9094488b0404dd493006fe749f8aead5685f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 M. Elaskandrany and R. Patel contributed equally to this work. |
ORCID | 0000-0002-5506-5827 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8410104 |
PMID | 34231392 |
PQID | 2569691939 |
PQPubID | 48585 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8410104 proquest_miscellaneous_2549203424 proquest_journals_2569691939 crossref_primary_10_1152_ajpgi_00025_2021 crossref_citationtrail_10_1152_ajpgi_00025_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bethesda |
PublicationPlace_xml | – name: Bethesda – name: Rockville, MD |
PublicationSeriesTitle | Microbiome-Based Therapeutics and Their Physiological Effects |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationYear | 2021 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B69 B26 B27 B28 B29 CDC. (B42) 2019 B70 B71 B72 B73 B30 B74 B31 B75 B32 B76 B33 B77 B34 B78 B35 B79 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B80 B81 B82 B83 B40 B84 B41 B85 B86 B43 B87 B44 B88 B45 B89 B46 B47 B48 B49 B90 B91 B92 B93 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B66 doi: 10.3390/cancers12082331 – ident: B2 doi: 10.1053/j.gastro.2018.12.045 – ident: B41 doi: 10.1155/2018/7946431 – ident: B59 doi: 10.3892/or.2013.2410 – ident: B25 doi: 10.3389/fcimb.2020.00112 – ident: B28 doi: 10.1053/j.gastro.2017.06.004 – ident: B76 doi: 10.1158/1535-7163.MCT-06-0686 – ident: B19 doi: 10.1080/21505594.2016.1247140 – ident: B58 doi: 10.1111/imm.12046 – ident: B43 doi: 10.1101/cshperspect.a019802 – ident: B87 doi: 10.1016/j.ccell.2020.02.008 – ident: B32 doi: 10.1016/j.chom.2020.04.018 – ident: B37 doi: 10.6001/actamedica.v25i4.3929 – ident: B23 doi: 10.1159/000488539 – ident: B14 doi: 10.1016/j.semcancer.2014.04.004 – ident: B30 doi: 10.1007/s00253-021-11264-4 – ident: B71 doi: 10.1186/s12885-019-6115-1 – ident: B11 doi: 10.1038/s41568-019-0155-3 – ident: B18 doi: 10.1371/journal.ppat.1000713 – ident: B83 doi: 10.3389/fimmu.2018.01878 – ident: B27 doi: 10.1016/j.mehy.2020.109648 – ident: B91 doi: 10.1016/j.cell.2019.07.008 – ident: B15 doi: 10.3748/wjg.v21.i40.11450 – ident: B29 doi: 10.1111/nmo.13891 – ident: B40 doi: 10.1038/s41575-018-0011-z – ident: B44 doi: 10.2165/00003495-200161001-00001 – ident: B6 doi: 10.1152/ajpgi.00118.2019 – ident: B31 doi: 10.3390/jof7050324 – ident: B75 doi: 10.1158/2159-8290.CD-19-0094 – ident: B35 doi: 10.1016/j.ccell.2018.03.015 – ident: B61 doi: 10.3389/fimmu.2017.01909 – ident: B81 doi: 10.1016/j.pan.2019.11.006 – ident: B69 doi: 10.1371/journal.pone.0083744 – ident: B68 doi: 10.18632/oncotarget.16717 – ident: B63 doi: 10.18632/oncotarget.3109 – ident: B78 doi: 10.1126/sciadv.aav6789 – ident: B86 doi: 10.1371/journal.pone.0004834 – ident: B9 doi: 10.1038/nature06244 – ident: B47 doi: 10.1016/j.immuni.2018.08.018 – ident: B65 doi: 10.1016/j.canlet.2013.08.016 – ident: B80 doi: 10.1038/nrdp.2016.22 – ident: B46 doi: 10.1136/gutjnl-2018-317178 – ident: B51 doi: 10.1038/s41435-019-0071-2 – ident: B3 doi: 10.1111/odi.12392 – ident: B24 doi: 10.1016/S1473-3099(21)00397-2 – ident: B53 doi: 10.1016/j.cyto.2011.08.031 – ident: B84 doi: 10.1016/j.canlet.2015.12.020 – ident: B22 doi: 10.1155/2015/284680 – ident: B8 doi: 10.3892/ol.2020.11441 – ident: B20 doi: 10.1371/journal.pone.0066019 – ident: B85 doi: 10.1155/2011/267539 – ident: B45 doi: 10.1155/2012/465717 – ident: B13 doi: 10.1016/j.coviro.2019.06.003 – ident: B88 doi: 10.1016/j.pharmthera.2017.02.013 – ident: B55 doi: 10.1097/MPA.0000000000000941 – ident: B62 doi: 10.1038/nature13684 – ident: B92 doi: 10.1126/science.aah5043 – ident: B34 doi: 10.15252/embj.2020105320 – ident: B89 doi: 10.1002/eji.201948322 – ident: B72 doi: 10.3389/fimmu.2019.03070 – ident: B17 doi: 10.1002/wsbm.1438 – ident: B7 doi: 10.1038/s41586-019-1238-8 – volume-title: Antibiotic resistance threats in the United States year: 2019 ident: B42 – ident: B64 doi: 10.1053/j.gastro.2015.09.004 – ident: B36 doi: 10.1016/j.cell.2020.05.048 – ident: B26 doi: 10.1371/journal.ppat.1008353 – ident: B93 doi: 10.1126/science.aay9189 – ident: B49 doi: 10.1093/mmy/myx134 – ident: B52 doi: 10.1016/j.immuni.2015.10.023 – ident: B10 doi: 10.1038/nrgastro.2017.88 – ident: B48 doi: 10.1128/CMR.00021-11 – ident: B67 doi: 10.1016/j.biopha.2016.09.082 – ident: B4 doi: 10.1016/j.coviro.2019.05.007 – ident: B5 doi: 10.1038/s41586-019-1608-2 – ident: B79 doi: 10.1038/s41571-020-0363-5 – ident: B70 doi: 10.1080/19490976.2017.1379637 – ident: B38 doi: 10.1038/nature23910 – ident: B39 doi: 10.1016/j.cell.2016.11.018 – ident: B1 doi: 10.1158/2159-8290.CD-17-1134 – ident: B54 doi: 10.3389/fphys.2019.01202 – ident: B60 doi: 10.15171/mejdd.2018.126 – ident: B74 doi: 10.1186/s12943-019-1117-9 – ident: B90 doi: 10.1016/j.semcancer.2020.06.006 – ident: B16 doi: 10.1038/nri.2017.55 – ident: B57 doi: 10.1371/journal.pgen.1005614 – ident: B50 doi: 10.1007/s11046-019-00413-z – ident: B56 doi: 10.1111/cas.13766 – ident: B21 doi: 10.1186/s40168-017-0373-4 – ident: B77 doi: 10.1126/sciimmunol.abb5168 – ident: B33 doi: 10.7150/thno.55209 – ident: B73 doi: 10.1158/1078-0432.CCR-16-2318 – ident: B12 doi: 10.1016/j.trecan.2020.01.004 – ident: B82 doi: 10.1053/j.gastro.2012.12.042 |
SSID | ssj0005211 |
Score | 2.456143 |
SecondaryResourceType | review_article |
Snippet | Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | G213 |
SubjectTerms | Adenocarcinoma Cancer therapies Complement component C3 Dysbacteriosis Immune response Immunotherapy Mannose Mannose-binding lectin Microbiomes Mini-Review Scalp Stroma Tumor microenvironment Tumorigenesis Tumors |
Title | Fungi, host immune response, and tumorigenesis |
URI | https://www.proquest.com/docview/2569691939 https://www.proquest.com/docview/2549203424 https://pubmed.ncbi.nlm.nih.gov/PMC8410104 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKkKa9INhAFAYKEkJCW7rUcer4sUysE6ioSEXaW-S4Lgu0SbWmD-WfhzvbSROGEOwlqhKnTnyX-2F_95mQ10EsOQ2i2FcQbfhMy9SPdcB9HUJsGgSpSs3-KeNPg8sv7MNVdNXp_GygljZl2lM__lhXchepwjmQK1bJ_odk6z-FE_Ab5AtHkDAc_0nGF_ClmtV4LNU4ybDUA3dBMahXXeEyy80Sd79Cm5atm7FovVjTYI8wEx22gCUcnozkurwpkFECDEHuWAUWiORoNNyhP-T6OzQA57e1gHxZA38nENEuLJD7OstvnR1DF0VRy74uT7QT9tbwISHzGq5Z4qil9t-B_50hYqSqH7Ns01Oz8jGpHs_ooKVobs1w0H6NrysbRQXoElq3OlRrc25UhD5SW1nX5uw55NoQJfKmwQ9tTbbTbNow3yNqC2NdKDCitmb6tpuJkLZWflt9zZAAk0Y9fO5mUxDSamnUDikWIcymO4dbwyAn4_OY9TEjvkfuU8hz0FB__Bw3MEp9t6GmfbNqnT2iZ793fkD2q57aIdYub2qjfhth1PQheeDyH29olfkR6ej8kBwNc1kWy633xqtHf3tI9scO-HFEekbVTz1UdM8qulcp-qkHcvdaav6YTC_eT88vfbfVh68gwS99yTmXXEWSShEKiSRKEiLZGeNKBIKBl0nB27DZjIkQ_MRccybmsQQzGA3iaB4-IXt5keunxFOa876MlWBqwOKUQwCb4mSrgtA9jnXYJWfV4CTK0eDjbiyLxKTDEU3MyCZmZBMc2S55W9-xshQwf2l7XI134j7edQJZhRgIkKHoklf1ZTDjuDYnc11ssA0TFOk4WZfwlpzqPpEIvn0lz64NIbxTomd3vvM5Odh9eMdkr7zZ6BcQbJfpS6OQvwDJttpT |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fungi%2C+host+immune+response%2C+and+tumorigenesis&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Elaskandrany%2C+Miar&rft.au=Patel%2C+Rohin&rft.au=Patel%2C+Mintoo&rft.au=Miller%2C+George&rft.series=Microbiome-Based+Therapeutics+and+Their+Physiological+Effects&rft.date=2021-08-01&rft.pub=American+Physiological+Society&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=321&rft.issue=2&rft.spage=G213&rft.epage=G222&rft_id=info:doi/10.1152%2Fajpgi.00025.2021&rft_id=info%3Apmid%2F34231392&rft.externalDocID=PMC8410104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |