Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanopa...
Saved in:
Published in | International journal of biological macromolecules Vol. 128; pp. 499 - 508 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-8130 1879-0003 1879-0003 |
DOI | 10.1016/j.ijbiomac.2019.01.145 |
Cover
Loading…
Abstract | Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
•Chitosan capped (CuO and Cu) nanoparticles were prepared by facile chemical reduction.•The CHCuO and CHCu NPs were blended with CH to form nanocomposite films by solution casting method•The CHCuO and their nanocomposite films showed better antimicrobial activity than other materials•Developed nanocomposite films will be useful for antimicrobial applications. |
---|---|
AbstractList | Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu
ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications. Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications. Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu²⁺ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications. Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications. •Chitosan capped (CuO and Cu) nanoparticles were prepared by facile chemical reduction.•The CHCuO and CHCu NPs were blended with CH to form nanocomposite films by solution casting method•The CHCuO and their nanocomposite films showed better antimicrobial activity than other materials•Developed nanocomposite films will be useful for antimicrobial applications. |
Author | Kumar, Kanderi Dileep Akbari-Fakhrabadi, A. Jayaramudu, Tippabattini Pyarasani, Radha D. Amalraj, John Varaprasad, Kokkarachedu Reddy, K. Koteshwara Mangalaraja, R.V. |
Author_xml | – sequence: 1 givenname: Tippabattini surname: Jayaramudu fullname: Jayaramudu, Tippabattini email: jtibbabattini@utalca.cl, mr.jayaramudu@gmail.com organization: Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile – sequence: 2 givenname: Kokkarachedu surname: Varaprasad fullname: Varaprasad, Kokkarachedu organization: Centre de Investigacion de Polimeros Avanzados, CIPA, avenida Collao 1202, Edificio de Laoratorios, Concepcion, Chile – sequence: 3 givenname: Radha D. surname: Pyarasani fullname: Pyarasani, Radha D. organization: Vicerrectoria de Investigacion y Postgrado, Universidad Catolica del Maule, 3460000 Talca, Chile – sequence: 4 givenname: K. Koteshwara surname: Reddy fullname: Reddy, K. Koteshwara organization: Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile – sequence: 5 givenname: Kanderi Dileep orcidid: 0000-0002-0533-4988 surname: Kumar fullname: Kumar, Kanderi Dileep organization: Dept. of Microbiology, Sri Krishnadevaraya University, Ananthapuramu 515003, Andhra Pradesh, India – sequence: 6 givenname: A. surname: Akbari-Fakhrabadi fullname: Akbari-Fakhrabadi, A. organization: Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Beauchef, 851 Santiago, Chile – sequence: 7 givenname: R.V. surname: Mangalaraja fullname: Mangalaraja, R.V. organization: Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion 407-0409, Chile – sequence: 8 givenname: John surname: Amalraj fullname: Amalraj, John email: jamalraj@utalca.cl organization: Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30699337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaWbS_oXgZTZ29LAtG7JIGdIHBLpp10KWrugdbMmRNKX991Uyky66mdVF4jtncb4tufDBAyHXjDaMsv523-B-wrBo03DKxoayhrXdG7JhgxxrSqm4IBvKWlYPTNBLsk1pX377jg3vyKWg_TgKITfE7X5iDkn7yuh1BVuZUE6swm-0cHt6eO3DqmNGM0OqwBc0HWadC76giWFCPVcREqasfX7BTVjWkDBD5XBe0nvy1uk5wYfTvSI_Pj18332pH799_rr7-FiblrJcj1po7pywHXUTcNpJwcAKx2FqLZfCDpPsnTCTmWQLwtixkEy6VmhpKLfiitwce9cYng6QslowGZhn7SEckuK8E6V2EOI8yuTYDh3lY0GvT-hhWsCqNeKi4x_1OmMB-iNQxkgpgvuHMKqefam9evWlnn0pylTxVYJ3_wUNZp0x-Bw1zufj98c4lE1_IUSVDBY_YDGCycoGPFfxF01LuBw |
CitedBy_id | crossref_primary_10_1016_j_nanoso_2020_100464 crossref_primary_10_1007_s11696_024_03785_9 crossref_primary_10_1016_j_arabjc_2021_103224 crossref_primary_10_3390_coatings10100944 crossref_primary_10_1016_j_molstruc_2022_133108 crossref_primary_10_1038_s41598_021_88907_z crossref_primary_10_3390_foods13223674 crossref_primary_10_1016_j_ijbiomac_2024_137774 crossref_primary_10_3389_fendo_2023_1221705 crossref_primary_10_1016_j_carbpol_2021_117762 crossref_primary_10_1016_j_ijbiomac_2019_03_019 crossref_primary_10_1007_s10570_024_05960_3 crossref_primary_10_1021_acsabm_9b00834 crossref_primary_10_1016_j_matchemphys_2022_126299 crossref_primary_10_1016_j_carbpol_2023_121644 crossref_primary_10_1007_s41061_022_00364_y crossref_primary_10_3390_md19120697 crossref_primary_10_1016_j_molstruc_2024_141124 crossref_primary_10_1016_j_rechem_2022_100635 crossref_primary_10_1016_j_jddst_2023_104549 crossref_primary_10_3390_polym15092167 crossref_primary_10_1016_j_colsurfb_2020_111216 crossref_primary_10_1002_jbm_b_35047 crossref_primary_10_3390_molecules27217261 crossref_primary_10_1016_j_matchemphys_2021_124583 crossref_primary_10_1134_S156009042560007X crossref_primary_10_3390_polym15163370 crossref_primary_10_1016_j_ijbiomac_2024_131253 crossref_primary_10_3390_ijms22094595 crossref_primary_10_1016_j_ijbiomac_2024_133043 crossref_primary_10_1186_s12951_020_00704_4 crossref_primary_10_3389_fbioe_2021_650598 crossref_primary_10_1016_j_chemosphere_2022_136338 crossref_primary_10_1016_j_ijbiomac_2019_09_143 crossref_primary_10_2174_2211738510666220823152415 crossref_primary_10_1016_j_carbpol_2020_117302 crossref_primary_10_14233_ajchem_2022_23985 crossref_primary_10_1016_j_ijbiomac_2021_07_139 crossref_primary_10_1016_j_bcab_2022_102574 crossref_primary_10_3390_ijms21072637 crossref_primary_10_1016_j_jwpe_2023_103556 crossref_primary_10_1016_j_nxnano_2024_100077 crossref_primary_10_7717_peerj_13386 crossref_primary_10_1016_j_biortech_2021_125568 crossref_primary_10_1021_acsinfecdis_1c00660 crossref_primary_10_1016_j_ceramint_2024_05_389 crossref_primary_10_1002_app_53559 crossref_primary_10_3390_ijms241310503 crossref_primary_10_1016_j_microc_2020_104855 crossref_primary_10_1016_j_molliq_2019_112087 crossref_primary_10_1016_j_porgcoat_2022_107269 crossref_primary_10_1002_jsf2_86 crossref_primary_10_1002_slct_202402505 crossref_primary_10_1016_j_arabjc_2021_103661 crossref_primary_10_1016_j_molliq_2024_126541 crossref_primary_10_3390_nano12111829 crossref_primary_10_1002_pat_6146 crossref_primary_10_1016_j_ijbiomac_2023_124898 crossref_primary_10_1002_admi_202400461 crossref_primary_10_1016_j_ijbiomac_2019_12_096 crossref_primary_10_1016_j_eurpolymj_2022_111293 crossref_primary_10_1016_j_rsurfi_2022_100048 crossref_primary_10_3390_md18010064 crossref_primary_10_1016_j_ijbiomac_2023_127027 crossref_primary_10_1088_2053_1591_acad67 crossref_primary_10_1016_j_ijbiomac_2023_124954 crossref_primary_10_2139_ssrn_4126735 crossref_primary_10_3390_membranes12020215 crossref_primary_10_1016_j_carbpol_2020_116243 crossref_primary_10_1021_acsabm_3c00958 crossref_primary_10_1038_s41598_022_17332_7 crossref_primary_10_1007_s10924_022_02374_9 crossref_primary_10_1111_1541_4337_13136 crossref_primary_10_1016_j_heliyon_2024_e35588 crossref_primary_10_1016_j_envres_2022_114986 crossref_primary_10_1016_j_mtcomm_2024_111149 crossref_primary_10_1016_j_ijbiomac_2020_05_198 crossref_primary_10_1016_j_msec_2020_111843 crossref_primary_10_1016_j_foodchem_2020_127378 crossref_primary_10_1002_adhm_202203054 crossref_primary_10_1016_j_fbio_2022_101570 crossref_primary_10_1016_j_ijbiomac_2021_04_059 crossref_primary_10_1016_j_chemosphere_2020_128185 crossref_primary_10_3390_polym14122335 crossref_primary_10_1016_j_colsurfb_2024_113861 crossref_primary_10_1038_s41598_021_98051_3 crossref_primary_10_3390_su12114587 crossref_primary_10_1016_j_inoche_2023_111222 crossref_primary_10_1016_j_reactfunctpolym_2021_105059 crossref_primary_10_1002_app_56612 crossref_primary_10_1016_j_matlet_2022_133694 crossref_primary_10_1155_2022_7557825 crossref_primary_10_1016_j_ijbiomac_2022_05_143 crossref_primary_10_1016_j_mseb_2023_116467 crossref_primary_10_1016_j_apsusc_2019_145032 crossref_primary_10_1007_s10924_020_01999_y crossref_primary_10_1002_app_54440 crossref_primary_10_1002_smll_202407195 crossref_primary_10_1016_j_reactfunctpolym_2019_104372 crossref_primary_10_1016_j_mtcomm_2023_107059 crossref_primary_10_1039_D3RA06619C crossref_primary_10_1016_j_carbpol_2020_116825 crossref_primary_10_1016_j_carbpol_2022_119974 crossref_primary_10_3390_pr12122772 |
Cites_doi | 10.1111/j.1472-765X.2011.03069.x 10.1016/j.actbio.2018.09.013 10.1016/j.carbpol.2018.08.001 10.1016/j.carbpol.2018.03.046 10.1016/j.carbpol.2017.06.035 10.1016/j.carbpol.2014.05.081 10.1016/j.ijfoodmicro.2010.09.012 10.1016/j.carbpol.2018.04.007 10.1002/app.43027 10.1016/j.carbpol.2018.07.030 10.1016/j.msec.2016.06.052 10.1016/j.elecom.2014.11.016 10.1016/j.msec.2018.07.067 10.1007/s00339-016-0193-6 10.1021/acs.iecr.6b04692 10.1016/j.colsurfa.2015.11.034 10.1016/j.carbpol.2016.07.045 10.1016/j.carbpol.2016.05.045 10.1016/j.carbpol.2018.07.026 10.1016/j.nimb.2009.01.049 10.1016/j.ijbiomac.2016.01.057 10.1016/j.carbpol.2017.12.043 10.1016/j.carbpol.2012.12.006 10.1039/C3BM60159E 10.1016/j.msec.2018.10.062 10.1007/s11671-009-9264-3 10.1016/j.carbon.2011.12.063 10.1016/j.carbpol.2015.09.001 10.1088/2043-6262/2/1/015009 10.1016/j.apsusc.2017.06.280 10.1016/j.ijbiomac.2018.08.057 10.1016/j.seppur.2016.12.006 10.1016/j.saa.2013.12.020 10.1016/j.ijbiomac.2018.08.187 10.1016/j.carbpol.2017.04.070 10.1016/j.msec.2016.06.037 10.1016/j.colsurfa.2014.10.031 10.1016/j.carbpol.2017.04.077 10.1002/jbm.a.30414 10.1016/j.matlet.2008.11.023 10.1016/j.carbpol.2012.12.035 10.1016/j.carbpol.2016.09.008 10.1016/j.snb.2018.05.173 10.1021/acs.biomac.7b01180 10.1002/app.43811 10.1016/j.actbio.2015.03.033 10.1016/j.ijbiomac.2015.12.026 10.1016/j.msec.2016.08.041 10.1016/j.molliq.2016.06.080 10.1016/j.ijbiomac.2015.10.018 10.1016/j.jscs.2015.12.004 10.1007/s10812-005-0060-2 10.1021/ja029267j 10.1016/j.carbpol.2018.07.090 10.1016/j.msec.2014.08.031 10.1016/j.ijbiomac.2017.12.022 10.1016/j.ijbiomac.2016.03.026 10.1016/j.carbpol.2018.08.124 10.1021/acsami.7b13750 10.1016/j.cplett.2017.10.017 10.1557/opl.2012.645 10.1016/j.solidstatesciences.2012.09.002 10.1016/j.carbpol.2018.07.081 10.1016/j.carbpol.2018.01.033 10.1016/j.carbpol.2018.03.099 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019. Published by Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2019.01.145 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
EndPage | 508 |
ExternalDocumentID | 30699337 10_1016_j_ijbiomac_2019_01_145 S0141813018371824 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K UNMZH ~02 ~G- 29J AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HVGLF HZ~ R2- RIG SBG SEW SSH UHS WUQ NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-9a3a2ff3d50fbe205731ed3f2eb4d273d8b76f3cbcb74e3cd9d5017f43a7c02d3 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Jul 11 02:38:31 EDT 2025 Mon Jul 21 09:25:44 EDT 2025 Wed Feb 19 02:35:15 EST 2025 Thu Apr 24 22:56:10 EDT 2025 Tue Jul 01 01:03:35 EDT 2025 Fri Feb 23 02:50:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CHCu NPs CHCuO NPs Chitosan |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-9a3a2ff3d50fbe205731ed3f2eb4d273d8b76f3cbcb74e3cd9d5017f43a7c02d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0533-4988 |
PMID | 30699337 |
PQID | 2179485029 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2253205833 proquest_miscellaneous_2179485029 pubmed_primary_30699337 crossref_primary_10_1016_j_ijbiomac_2019_01_145 crossref_citationtrail_10_1016_j_ijbiomac_2019_01_145 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2019_01_145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Reddy, Kim (bb0300) 2016; 122 Ayala, de O. Vercik, Menezes, Vercik (bb0095) 2012; 1386 Nataraj, Sakkara, Meghwal, Reddy (bb0125) 2018; 120 Salavati-Niasari, Davar (bb0250) 2009; 63 Dizaj, Lotfipour, Barzegar-Jalali, Zarrintan, Adibkia (bb0305) 2014; 44 Cai, Ye, Wang, Lin, Lin, Zhang, Wu (bb0180) 2016; 151 Raghavendra, Jayaramudu, Varaprasad, Sadiku, Ray, Mohana Raju (bb0065) 2013; 93 Yu, Li, Chu, Zhang (bb0120) 2018; 184 Ahmed, Tariq, Ali, Asghar, Noorunnisa Khanam, Augustine, Hasan (bb0290) 2018; 120 Bajaj, Joh, Jo, Park, Yi, Lee (bb0275) 2018; 429 Meenakshi, Devi, Pandian, Devendiran, Selvaraj (bb0005) 2016; 69 Jayaramudu, Raghavendra, Varaprasad, Reddy, Reddy, Sudhakar, Sadiku (bb0055) 2016; 133 Zhang, Zhang, Pan, Xu, Yan, Liu (bb0210) 2017; 176 Jain, Jain, Devra (bb0260) 2017; 21 Hoogesteijn von Reitzenstein, Bi, Yang, Hristovski, Westerhoff (bb0060) 2016; 133 Li, Lu, Zhou, Yu, Lu, Xiao, Dai, Wu, Lan (bb0085) 2017; 18 Chowdhury, Shaik, Chakraborty (bb0050) 2015; 466 Wu, Huang, Li, Xiao, Wang (bb0135) 2018; 199 Delgado, Quijada, Palma, Palza (bb0325) 2011; 53 Raghavendra, Jung, Kim, Seo (bb0070) 2016; 86 Raghavendra, Jung, Kim, Varaprasad, Seo (bb0145) 2016; 152 Fan, Ma, Mao, Zhang, Tan (bb0195) 2015; 20 Wang, Huang, He, Huang, Wu, Hou, Liu, Yang, Zou, Huang (bb0280) 2012; 50 Bogdanović, Dimitrijević, Škapin, Popović, Rakočević, Leskovac, Petrović, Stoiljković, Vodnik (bb0320) 2018; 93 Kong, Gao, Cao, Gong, Zhao, Zhang (bb0265) 2005; 75A Tamayo, Azócar, Kogan, Riveros, Páez (bb0310) 2016; 69 Urbina, Guaresti, Requies, Gabilondo, Eceiza, Corcuera, Retegi (bb0200) 2018; 193 Raveendran, Fu, Wallen (bb0100) 2003; 125 Khan, Ali, Kamal, Anwar, Asiri, Seo (bb0140) 2016; 88 Dang, Le, Fribourg-Blanc, Dang (bb0245) 2011; 2 Engkagul, Sereemaspun, Chirachanchai (bb0205) 2018; 200 Fazio, Santoro, Lentini, Franco, Guglielmino, Neri (bb0020) 2016; 490 Raghavendra, Jung, Kim, Seo (bb0215) 2017; 172 Popok, Stepanov, Odzhaev (bb0040) 2005; 72 Govindaraju, Samal, Yun (bb0010) 2016; 69 Sreeju, Rufus, Philip (bb0025) 2016; 221 Jayaramudu, Raghavendra, Varaprasad, Sadiku, Raju (bb0225) 2013; 92 Shahraki, Samareh Delarami (bb0270) 2018; 200 Lu, Lu, Zou, Liu, Rong, Li, Dai, Wu, Lan (bb0285) 2017; 173 Kong, Chen, Xing, Park (bb0330) 2010; 144 Abiraman, Balasubramanian (bb0220) 2017; 56 Sankar, Manikandan, Malarvizhi, Fathima, Shivashangari, Ravikumar (bb0240) 2014; 121 Huang, Xu, Li, Cheng, Wang, Sun (bb0175) 2019; 96 Dinu, Dinu, Lazar, Dragan (bb0160) 2018; 186 Zeeshan, Mutahir, Iqbal, Ali, Iqbal, Ijaz, Sharif, Shah, Chaudhry, Yar, Luan, Khan (bb0295) 2018; 193 Truong, Ablett, Gilbert, Bowen, Richardson, Hoyland, Dove (bb0190) 2014; 2 Fan, Chen, Pang, Lu, Zhao, Liu, Fang (bb0030) 2017; 689 Jayaramudu, Varaprasad, Kim, Kafy, Kim, Kim (bb0230) 2017; 171 Yu, Xie, Chen, Li, Zhang (bb0255) 2009; 4 Haider, Ali, Haider, Al-Masry, Al-Zeghayer (bb0150) 2018; 199 Marković, Deeks, Nunney, Radovanović, Radoičić, Šaponjić, Radetić (bb0315) 2018; 200 Qin, Liao, Dong, Wu, Hou, Liu (bb0045) 2009; 267 Farhoudian, Yadollahi, Namazi (bb0185) 2016; 82 Varukattu, Vivek, Rejeeth, Thangam, Ponraj, Sharma, Kannan (bb0170) 2018 Lu, Li, Zhu, Wang, Li, Lin, Hu, Zhang, Yin, Xia, Mao (bb0165) 2018; 10 Ulutürk, Alemdar (bb0235) 2018; 193 Figiela, Wysokowski, Galinski, Jesionowski, Stepniak (bb0155) 2018; 272 Shang, Min, Hu, Wang, Liu, Hu (bb0015) 2013; 15 Foresti, Vázquez, Boury (bb0075) 2017; 157 Chen, Zhan, Wang, Han, Tao, Luo, Ma, Wang, Li, Fan, Li, Deng, Cao (bb0110) 2018 Ghayempour, Montazer, Mahmoudi Rad (bb0080) 2016; 136 Haider, Haider, Kang, Kumar, Kummara, Kamal, Han (bb0090) 2018; 108 Raghavendra, Jung, Kim, Seo (bb0105) 2016; 84 Zou, Chen, Zhang, Li, Sun, Gui, Du, Chen (bb0115) 2018; 202 Zain, Stapley, Shama (bb0130) 2014; 112 Nasretdinova, Fazleeva, Mukhitova, Nizameev, Kadirov, Ziganshina, Yanilkin (bb0035) 2015; 50 Reddy (10.1016/j.ijbiomac.2019.01.145_bb0300) 2016; 122 Dinu (10.1016/j.ijbiomac.2019.01.145_bb0160) 2018; 186 Hoogesteijn von Reitzenstein (10.1016/j.ijbiomac.2019.01.145_bb0060) 2016; 133 Lu (10.1016/j.ijbiomac.2019.01.145_bb0165) 2018; 10 Urbina (10.1016/j.ijbiomac.2019.01.145_bb0200) 2018; 193 Lu (10.1016/j.ijbiomac.2019.01.145_bb0285) 2017; 173 Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0065) 2013; 93 Dang (10.1016/j.ijbiomac.2019.01.145_bb0245) 2011; 2 Zeeshan (10.1016/j.ijbiomac.2019.01.145_bb0295) 2018; 193 Tamayo (10.1016/j.ijbiomac.2019.01.145_bb0310) 2016; 69 Sankar (10.1016/j.ijbiomac.2019.01.145_bb0240) 2014; 121 Ayala (10.1016/j.ijbiomac.2019.01.145_bb0095) 2012; 1386 Varukattu (10.1016/j.ijbiomac.2019.01.145_bb0170) 2018 Abiraman (10.1016/j.ijbiomac.2019.01.145_bb0220) 2017; 56 Foresti (10.1016/j.ijbiomac.2019.01.145_bb0075) 2017; 157 Chen (10.1016/j.ijbiomac.2019.01.145_bb0110) 2018 Zain (10.1016/j.ijbiomac.2019.01.145_bb0130) 2014; 112 Jain (10.1016/j.ijbiomac.2019.01.145_bb0260) 2017; 21 Qin (10.1016/j.ijbiomac.2019.01.145_bb0045) 2009; 267 Salavati-Niasari (10.1016/j.ijbiomac.2019.01.145_bb0250) 2009; 63 Cai (10.1016/j.ijbiomac.2019.01.145_bb0180) 2016; 151 Bogdanović (10.1016/j.ijbiomac.2019.01.145_bb0320) 2018; 93 Kong (10.1016/j.ijbiomac.2019.01.145_bb0265) 2005; 75A Haider (10.1016/j.ijbiomac.2019.01.145_bb0150) 2018; 199 Yu (10.1016/j.ijbiomac.2019.01.145_bb0255) 2009; 4 Haider (10.1016/j.ijbiomac.2019.01.145_bb0090) 2018; 108 Zou (10.1016/j.ijbiomac.2019.01.145_bb0115) 2018; 202 Marković (10.1016/j.ijbiomac.2019.01.145_bb0315) 2018; 200 Figiela (10.1016/j.ijbiomac.2019.01.145_bb0155) 2018; 272 Dizaj (10.1016/j.ijbiomac.2019.01.145_bb0305) 2014; 44 Popok (10.1016/j.ijbiomac.2019.01.145_bb0040) 2005; 72 Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0105) 2016; 84 Kong (10.1016/j.ijbiomac.2019.01.145_bb0330) 2010; 144 Zhang (10.1016/j.ijbiomac.2019.01.145_bb0210) 2017; 176 Bajaj (10.1016/j.ijbiomac.2019.01.145_bb0275) 2018; 429 Raveendran (10.1016/j.ijbiomac.2019.01.145_bb0100) 2003; 125 Delgado (10.1016/j.ijbiomac.2019.01.145_bb0325) 2011; 53 Fazio (10.1016/j.ijbiomac.2019.01.145_bb0020) 2016; 490 Yu (10.1016/j.ijbiomac.2019.01.145_bb0120) 2018; 184 Khan (10.1016/j.ijbiomac.2019.01.145_bb0140) 2016; 88 Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0145) 2016; 152 Fan (10.1016/j.ijbiomac.2019.01.145_bb0195) 2015; 20 Govindaraju (10.1016/j.ijbiomac.2019.01.145_bb0010) 2016; 69 Ghayempour (10.1016/j.ijbiomac.2019.01.145_bb0080) 2016; 136 Farhoudian (10.1016/j.ijbiomac.2019.01.145_bb0185) 2016; 82 Ulutürk (10.1016/j.ijbiomac.2019.01.145_bb0235) 2018; 193 Fan (10.1016/j.ijbiomac.2019.01.145_bb0030) 2017; 689 Jayaramudu (10.1016/j.ijbiomac.2019.01.145_bb0225) 2013; 92 Shang (10.1016/j.ijbiomac.2019.01.145_bb0015) 2013; 15 Nataraj (10.1016/j.ijbiomac.2019.01.145_bb0125) 2018; 120 Sreeju (10.1016/j.ijbiomac.2019.01.145_bb0025) 2016; 221 Nasretdinova (10.1016/j.ijbiomac.2019.01.145_bb0035) 2015; 50 Engkagul (10.1016/j.ijbiomac.2019.01.145_bb0205) 2018; 200 Wang (10.1016/j.ijbiomac.2019.01.145_bb0280) 2012; 50 Shahraki (10.1016/j.ijbiomac.2019.01.145_bb0270) 2018; 200 Meenakshi (10.1016/j.ijbiomac.2019.01.145_bb0005) 2016; 69 Jayaramudu (10.1016/j.ijbiomac.2019.01.145_bb0230) 2017; 171 Huang (10.1016/j.ijbiomac.2019.01.145_bb0175) 2019; 96 Jayaramudu (10.1016/j.ijbiomac.2019.01.145_bb0055) 2016; 133 Chowdhury (10.1016/j.ijbiomac.2019.01.145_bb0050) 2015; 466 Ahmed (10.1016/j.ijbiomac.2019.01.145_bb0290) 2018; 120 Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0215) 2017; 172 Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0070) 2016; 86 Truong (10.1016/j.ijbiomac.2019.01.145_bb0190) 2014; 2 Li (10.1016/j.ijbiomac.2019.01.145_bb0085) 2017; 18 Wu (10.1016/j.ijbiomac.2019.01.145_bb0135) 2018; 199 |
References_xml | – volume: 112 start-page: 195 year: 2014 end-page: 202 ident: bb0130 article-title: Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications publication-title: Carbohydr. Polym. – volume: 176 start-page: 164 year: 2017 end-page: 172 ident: bb0210 article-title: In situ formation of copper nanoparticles in carboxylated chitosan layer: preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties publication-title: Sep. Purif. Technol. – volume: 144 start-page: 51 year: 2010 end-page: 63 ident: bb0330 article-title: Antimicrobial properties of chitosan and mode of action: a state of the art review publication-title: Int. J. Food Microbiol. – volume: 92 start-page: 2193 year: 2013 end-page: 2200 ident: bb0225 article-title: Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria publication-title: Carbohydr. Polym. – volume: 121 start-page: 746 year: 2014 end-page: 750 ident: bb0240 article-title: Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 82 start-page: 837 year: 2016 end-page: 843 ident: bb0185 article-title: Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads publication-title: Int. J. Biol. Macromol. – volume: 202 start-page: 246 year: 2018 end-page: 257 ident: bb0115 article-title: Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties publication-title: Carbohydr. Polym. – volume: 20 start-page: 60 year: 2015 end-page: 68 ident: bb0195 article-title: Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering publication-title: Acta Biomater. – volume: 200 start-page: 173 year: 2018 end-page: 182 ident: bb0315 article-title: Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids publication-title: Carbohydr. Polym. – volume: 689 start-page: 162 year: 2017 end-page: 168 ident: bb0030 article-title: Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co publication-title: Chem. Phys. Lett. – volume: 69 start-page: 85 year: 2016 end-page: 94 ident: bb0005 article-title: Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples publication-title: Mater. Sci. Eng. C – volume: 63 start-page: 441 year: 2009 end-page: 443 ident: bb0250 article-title: Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor publication-title: Mater. Lett. – volume: 171 start-page: 183 year: 2017 end-page: 192 ident: bb0230 article-title: Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties publication-title: Carbohydr. Polym. – volume: 21 start-page: 803 year: 2017 end-page: 810 ident: bb0260 article-title: Copper nanoparticles catalyzed oxidation of threonine by peroxomonosulfate publication-title: J. Saudi Chem. Soc. – volume: 151 start-page: 130 year: 2016 end-page: 134 ident: bb0180 article-title: Preparation of copper-chelate quaternized carboxymethyl chitosan/organic rectorite nanocomposites for algae inhibition publication-title: Carbohydr. Polym. – volume: 122 start-page: 652 year: 2016 ident: bb0300 article-title: Facile synthesis of silver nanoparticles and its antibacterial activity against Escherichia coli and unknown bacteria on mobile phone touch surfaces/computer keyboards publication-title: Appl. Phys. A Mater. Sci. Process. – volume: 199 start-page: 210 year: 2018 end-page: 218 ident: bb0135 article-title: Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging publication-title: Carbohydr. Polym. – volume: 69 start-page: 366 year: 2016 end-page: 372 ident: bb0010 article-title: Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation publication-title: Mater. Sci. Eng. C – volume: 96 start-page: 129 year: 2019 end-page: 137 ident: bb0175 article-title: Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy publication-title: Mater. Sci. Eng. C – volume: 125 start-page: 13940 year: 2003 end-page: 13941 ident: bb0100 article-title: Completely “green” synthesis and stabilization of metal nanoparticles publication-title: J. Am. Chem. Soc. – volume: 490 start-page: 98 year: 2016 end-page: 103 ident: bb0020 article-title: Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 199 start-page: 406 year: 2018 end-page: 414 ident: bb0150 article-title: Novel route for amine grafting to chitosan electrospun nanofibers membrane for the removal of copper and lead ions from aqueous medium publication-title: Carbohydr. Polym. – volume: 15 start-page: 17 year: 2013 end-page: 23 ident: bb0015 article-title: Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation publication-title: Solid State Sci. – volume: 75A start-page: 275 year: 2005 end-page: 282 ident: bb0265 article-title: Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds publication-title: J. Biomed. Mater. Res. A – volume: 193 start-page: 307 year: 2018 end-page: 315 ident: bb0235 article-title: Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel publication-title: Carbohydr. Polym. – volume: 429 start-page: 253 year: 2018 end-page: 257 ident: bb0275 article-title: Enhanced reactive H publication-title: Appl. Surf. Sci. – volume: 184 start-page: 214 year: 2018 end-page: 220 ident: bb0120 article-title: Silica in situ enhanced PVA/chitosan biodegradable films for food packages publication-title: Carbohydr. Polym. – start-page: 0 year: 2018 end-page: 10 ident: bb0170 article-title: Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: a polymeric smart intracellular delivery system for doxorubicin in breast cancer cells publication-title: Arab. J. Chem. – volume: 136 start-page: 232 year: 2016 end-page: 241 ident: bb0080 article-title: Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties publication-title: Carbohydr. Polym. – volume: 56 start-page: 1498 year: 2017 end-page: 1508 ident: bb0220 article-title: Synthesis and characterization of large-scale (<2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating publication-title: Ind. Eng. Chem. Res. – volume: 120 start-page: 1256 year: 2018 end-page: 1264 ident: bb0125 article-title: Crosslinked chitosan films with controllable properties for commercial applications publication-title: Int. J. Biol. Macromol. – volume: 193 start-page: 362 year: 2018 end-page: 372 ident: bb0200 article-title: Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters publication-title: Carbohydr. Polym. – volume: 157 start-page: 447 year: 2017 end-page: 467 ident: bb0075 article-title: Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances publication-title: Carbohydr. Polym. – volume: 221 start-page: 1008 year: 2016 end-page: 1021 ident: bb0025 article-title: Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications publication-title: J. Mol. Liq. – volume: 133 year: 2016 ident: bb0060 article-title: Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats publication-title: J. Appl. Polym. Sci. – volume: 133 year: 2016 ident: bb0055 article-title: Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process publication-title: J. Appl. Polym. Sci. – volume: 272 start-page: 296 year: 2018 end-page: 307 ident: bb0155 article-title: Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing publication-title: Sensors Actuators B Chem. – volume: 44 start-page: 278 year: 2014 end-page: 284 ident: bb0305 article-title: Antimicrobial activity of the metals and metal oxide nanoparticles publication-title: Mater. Sci. Eng. C – volume: 53 start-page: 50 year: 2011 end-page: 54 ident: bb0325 article-title: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent publication-title: Lett. Appl. Microbiol. – volume: 69 start-page: 1391 year: 2016 end-page: 1409 ident: bb0310 article-title: Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces publication-title: Mater. Sci. Eng. C – volume: 18 start-page: 3766 year: 2017 end-page: 3775 ident: bb0085 article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing publication-title: Biomacromolecules – volume: 93 start-page: 553 year: 2013 end-page: 560 ident: bb0065 article-title: Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds publication-title: Carbohydr. Polym. – volume: 4 start-page: 465 year: 2009 end-page: 470 ident: bb0255 article-title: Synthesis and characterization of monodispersed copper colloids in polar solvents publication-title: Nanoscale Res. Lett. – volume: 1386 year: 2012 ident: bb0095 article-title: A simple and green method for synthesis of Ag and Au nanoparticles using biopolymers and sugars as reducing agent publication-title: MRS Proc. – volume: 200 start-page: 211 year: 2018 end-page: 220 ident: bb0270 article-title: Magnetic chitosan-( publication-title: Carbohydr. Polym. – volume: 193 start-page: 9 year: 2018 end-page: 18 ident: bb0295 article-title: Ihtesham-ur-Rehman, Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair publication-title: Carbohydr. Polym. – volume: 84 start-page: 281 year: 2016 end-page: 288 ident: bb0105 article-title: Microwave assisted antibacterial chitosan–silver nanocomposite films publication-title: Int. J. Biol. Macromol. – volume: 86 start-page: 126 year: 2016 end-page: 128 ident: bb0070 article-title: Step-reduced synthesis of starch-silver nanoparticles publication-title: Int. J. Biol. Macromol. – volume: 120 start-page: 385 year: 2018 end-page: 393 ident: bb0290 article-title: Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing publication-title: Int. J. Biol. Macromol. – volume: 173 start-page: 556 year: 2017 end-page: 565 ident: bb0285 article-title: In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity publication-title: Carbohydr. Polym. – volume: 200 start-page: 616 year: 2018 end-page: 623 ident: bb0205 article-title: One pot preparation of chitosan/hyaluronic acid-based triple network hydrogel via in situ click reaction, metal coordination and polyion complexation in water publication-title: Carbohydr. Polym. – volume: 50 start-page: 2119 year: 2012 end-page: 2125 ident: bb0280 article-title: Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene publication-title: Carbon – volume: 50 start-page: 69 year: 2015 end-page: 72 ident: bb0035 article-title: Electrochemical synthesis of silver nanoparticles in solution publication-title: Electrochem. Commun. – volume: 10 start-page: 127 year: 2018 end-page: 138 ident: bb0165 article-title: Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation publication-title: ACS Appl. Mater. Interfaces – volume: 172 start-page: 78 year: 2017 end-page: 84 ident: bb0215 article-title: Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties publication-title: Carbohydr. Polym. – volume: 88 start-page: 113 year: 2016 end-page: 119 ident: bb0140 article-title: CuO embedded chitosan spheres as antibacterial adsorbent for dyes publication-title: Int. J. Biol. Macromol. – volume: 152 start-page: 558 year: 2016 end-page: 565 ident: bb0145 article-title: Identification of silver cubic structures during ultrasonication of chitosan AgNO publication-title: Carbohydr. Polym. – volume: 267 start-page: 1077 year: 2009 end-page: 1080 ident: bb0045 article-title: Ag/Fe:TiO publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 2 start-page: 167 year: 2014 end-page: 175 ident: bb0190 article-title: In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering publication-title: Biomater. Sci. – volume: 186 start-page: 140 year: 2018 end-page: 149 ident: bb0160 article-title: Chitosan-based ion-imprinted cryo-composites with excellent selectivity for copper ions publication-title: Carbohydr. Polym. – volume: 2 year: 2011 ident: bb0245 article-title: Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. – volume: 108 start-page: 455 year: 2018 end-page: 461 ident: bb0090 article-title: A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent publication-title: Int. J. Biol. Macromol. – year: 2018 ident: bb0110 article-title: Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats publication-title: Acta Biomater. – volume: 72 start-page: 229 year: 2005 end-page: 234 ident: bb0040 article-title: Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties publication-title: J. Appl. Spectrosc. – volume: 93 start-page: 49 year: 2018 end-page: 60 ident: bb0320 article-title: Copper-polyaniline nanocomposite: role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation publication-title: Mater. Sci. Eng. C – volume: 466 start-page: 189 year: 2015 end-page: 196 ident: bb0050 article-title: Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 53 start-page: 50 year: 2011 ident: 10.1016/j.ijbiomac.2019.01.145_bb0325 article-title: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2011.03069.x – year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0110 article-title: Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.09.013 – volume: 200 start-page: 173 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0315 article-title: Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.08.001 – volume: 193 start-page: 9 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0295 article-title: Ihtesham-ur-Rehman, Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.03.046 – volume: 173 start-page: 556 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0285 article-title: In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.035 – volume: 112 start-page: 195 year: 2014 ident: 10.1016/j.ijbiomac.2019.01.145_bb0130 article-title: Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.05.081 – volume: 144 start-page: 51 year: 2010 ident: 10.1016/j.ijbiomac.2019.01.145_bb0330 article-title: Antimicrobial properties of chitosan and mode of action: a state of the art review publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2010.09.012 – volume: 193 start-page: 362 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0200 article-title: Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.04.007 – volume: 133 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0055 article-title: Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.43027 – volume: 199 start-page: 210 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0135 article-title: Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.030 – volume: 69 start-page: 366 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0010 article-title: Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.06.052 – volume: 50 start-page: 69 year: 2015 ident: 10.1016/j.ijbiomac.2019.01.145_bb0035 article-title: Electrochemical synthesis of silver nanoparticles in solution publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.11.016 – volume: 93 start-page: 49 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0320 article-title: Copper-polyaniline nanocomposite: role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.07.067 – volume: 122 start-page: 652 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0300 article-title: Facile synthesis of silver nanoparticles and its antibacterial activity against Escherichia coli and unknown bacteria on mobile phone touch surfaces/computer keyboards publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-016-0193-6 – volume: 56 start-page: 1498 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0220 article-title: Synthesis and characterization of large-scale (<2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04692 – volume: 490 start-page: 98 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0020 article-title: Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2015.11.034 – volume: 152 start-page: 558 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0145 article-title: Identification of silver cubic structures during ultrasonication of chitosan AgNO3 solution publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.07.045 – volume: 151 start-page: 130 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0180 article-title: Preparation of copper-chelate quaternized carboxymethyl chitosan/organic rectorite nanocomposites for algae inhibition publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.05.045 – volume: 199 start-page: 406 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0150 article-title: Novel route for amine grafting to chitosan electrospun nanofibers membrane for the removal of copper and lead ions from aqueous medium publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.026 – volume: 267 start-page: 1077 year: 2009 ident: 10.1016/j.ijbiomac.2019.01.145_bb0045 article-title: Ag/Fe:TiO2 nano-catalysts prepared by Fe ion implantation and Ag nanoparticle deposition by electron beam irradiation publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2009.01.049 – volume: 86 start-page: 126 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0070 article-title: Step-reduced synthesis of starch-silver nanoparticles publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.01.057 – volume: 184 start-page: 214 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0120 article-title: Silica in situ enhanced PVA/chitosan biodegradable films for food packages publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.12.043 – volume: 92 start-page: 2193 year: 2013 ident: 10.1016/j.ijbiomac.2019.01.145_bb0225 article-title: Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.12.006 – volume: 2 start-page: 167 year: 2014 ident: 10.1016/j.ijbiomac.2019.01.145_bb0190 article-title: In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering publication-title: Biomater. Sci. doi: 10.1039/C3BM60159E – volume: 96 start-page: 129 year: 2019 ident: 10.1016/j.ijbiomac.2019.01.145_bb0175 article-title: Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.10.062 – volume: 4 start-page: 465 year: 2009 ident: 10.1016/j.ijbiomac.2019.01.145_bb0255 article-title: Synthesis and characterization of monodispersed copper colloids in polar solvents publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-009-9264-3 – volume: 50 start-page: 2119 year: 2012 ident: 10.1016/j.ijbiomac.2019.01.145_bb0280 article-title: Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene publication-title: Carbon doi: 10.1016/j.carbon.2011.12.063 – volume: 136 start-page: 232 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0080 article-title: Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.09.001 – volume: 2 year: 2011 ident: 10.1016/j.ijbiomac.2019.01.145_bb0245 article-title: Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6262/2/1/015009 – volume: 429 start-page: 253 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0275 article-title: Enhanced reactive H2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.280 – volume: 120 start-page: 385 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0290 article-title: Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.08.057 – volume: 176 start-page: 164 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0210 article-title: In situ formation of copper nanoparticles in carboxylated chitosan layer: preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.12.006 – volume: 121 start-page: 746 year: 2014 ident: 10.1016/j.ijbiomac.2019.01.145_bb0240 article-title: Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2013.12.020 – volume: 120 start-page: 1256 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0125 article-title: Crosslinked chitosan films with controllable properties for commercial applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.08.187 – volume: 172 start-page: 78 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0215 article-title: Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.04.070 – volume: 69 start-page: 85 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0005 article-title: Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.06.037 – volume: 466 start-page: 189 year: 2015 ident: 10.1016/j.ijbiomac.2019.01.145_bb0050 article-title: Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2014.10.031 – volume: 171 start-page: 183 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0230 article-title: Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.04.077 – volume: 75A start-page: 275 year: 2005 ident: 10.1016/j.ijbiomac.2019.01.145_bb0265 article-title: Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.30414 – volume: 63 start-page: 441 year: 2009 ident: 10.1016/j.ijbiomac.2019.01.145_bb0250 article-title: Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.11.023 – volume: 93 start-page: 553 year: 2013 ident: 10.1016/j.ijbiomac.2019.01.145_bb0065 article-title: Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.12.035 – volume: 157 start-page: 447 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0075 article-title: Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.09.008 – volume: 272 start-page: 296 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0155 article-title: Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2018.05.173 – volume: 18 start-page: 3766 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0085 article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01180 – volume: 133 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0060 article-title: Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.43811 – volume: 20 start-page: 60 year: 2015 ident: 10.1016/j.ijbiomac.2019.01.145_bb0195 article-title: Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.03.033 – volume: 84 start-page: 281 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0105 article-title: Microwave assisted antibacterial chitosan–silver nanocomposite films publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.12.026 – volume: 69 start-page: 1391 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0310 article-title: Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.08.041 – volume: 221 start-page: 1008 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0025 article-title: Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.06.080 – start-page: 0 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0170 article-title: Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: a polymeric smart intracellular delivery system for doxorubicin in breast cancer cells publication-title: Arab. J. Chem. – volume: 82 start-page: 837 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0185 article-title: Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.10.018 – volume: 21 start-page: 803 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0260 article-title: Copper nanoparticles catalyzed oxidation of threonine by peroxomonosulfate publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2015.12.004 – volume: 72 start-page: 229 year: 2005 ident: 10.1016/j.ijbiomac.2019.01.145_bb0040 article-title: Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties publication-title: J. Appl. Spectrosc. doi: 10.1007/s10812-005-0060-2 – volume: 125 start-page: 13940 year: 2003 ident: 10.1016/j.ijbiomac.2019.01.145_bb0100 article-title: Completely “green” synthesis and stabilization of metal nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029267j – volume: 200 start-page: 616 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0205 article-title: One pot preparation of chitosan/hyaluronic acid-based triple network hydrogel via in situ click reaction, metal coordination and polyion complexation in water publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.090 – volume: 44 start-page: 278 year: 2014 ident: 10.1016/j.ijbiomac.2019.01.145_bb0305 article-title: Antimicrobial activity of the metals and metal oxide nanoparticles publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.08.031 – volume: 108 start-page: 455 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0090 article-title: A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.022 – volume: 88 start-page: 113 year: 2016 ident: 10.1016/j.ijbiomac.2019.01.145_bb0140 article-title: CuO embedded chitosan spheres as antibacterial adsorbent for dyes publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.03.026 – volume: 202 start-page: 246 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0115 article-title: Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.08.124 – volume: 10 start-page: 127 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0165 article-title: Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13750 – volume: 689 start-page: 162 year: 2017 ident: 10.1016/j.ijbiomac.2019.01.145_bb0030 article-title: Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.10.017 – volume: 1386 year: 2012 ident: 10.1016/j.ijbiomac.2019.01.145_bb0095 article-title: A simple and green method for synthesis of Ag and Au nanoparticles using biopolymers and sugars as reducing agent publication-title: MRS Proc. doi: 10.1557/opl.2012.645 – volume: 15 start-page: 17 year: 2013 ident: 10.1016/j.ijbiomac.2019.01.145_bb0015 article-title: Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2012.09.002 – volume: 200 start-page: 211 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0270 article-title: Magnetic chitosan-(d-glucosimine methyl)benzaldehyde Schiff base for Pb+2 ion removal. Experimental and theoretical methods publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.081 – volume: 186 start-page: 140 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0160 article-title: Chitosan-based ion-imprinted cryo-composites with excellent selectivity for copper ions publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.01.033 – volume: 193 start-page: 307 year: 2018 ident: 10.1016/j.ijbiomac.2019.01.145_bb0235 article-title: Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.03.099 |
SSID | ssj0006518 |
Score | 2.5527802 |
Snippet | Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 499 |
SubjectTerms | antibiotics antimicrobial properties ascorbic acid CHCu NPs CHCuO NPs chemical reduction Chitosan composite films copper copper nanoparticles cupric oxide Gram-positive bacteria nanocomposites sodium hydroxide transmission electron microscopy |
Title | Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2019.01.145 https://www.ncbi.nlm.nih.gov/pubmed/30699337 https://www.proquest.com/docview/2179485029 https://www.proquest.com/docview/2253205833 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hOJRLxbNNochIvRp7X9nsEUWgQFVOReK22qfqKDgRCRKn_nZm_AAqQTlwsmzNyuvZ8ez32fMg5AfVUTvGZZ7EKOQiUZ7bxGzuKdAhpqWjEZOTf10NJ9fi8kberJFxnwuDYZWd7299euOtuytFp81iUVUFhiXB9gQGChwLUDLWBBVCoZWf_H0O8xjK5hsfCuco_SJLeHpSTTHJ3WIpQ6qxfCfFtKbXN6i3AGizEZ1vkc8dgsxO20luk7VY75BP475x2y5J4z_wmi5tnXm7WMSQ-Tkc7rL5QxVi0Z3Utga63EXFZfDYFujyDIBnyG6rpjgT3AOoOMLLetWIY_Q5hnjFLFWz2-UeuT4_-z2e5F07hdwDiVrl2nLLUuJBlslFhpUQaQw8sehEABQTRk4NE_fOOyUi90GDJFVJcKt8yQLfJ-v1vI5fSaZTCow5ppQFxOeY89hoU5XCaRmpKgdE9jo0vqs1ji0vZqYPKpuaXvcGdW9KCiREDkjxNG7RVtt4d4Tul8j8YzcGtoR3xx73a2pgifBPia3j_H5pGLqpkSyZ_o8Mw54amLQ2IF9ag3iaM_AwwH1cffvA7A7IJp61wZWHZH11dx-_AwBauaPGwo_IxunFz8nVI4yOB_c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NBdhr2bPT1gV8-WZMXRsQhWpGubUwv0JuiJOUidoEmB_fyRthxswLYedgock7BM0eRHmw-Az0wFZbmQeaymPq8iE7mJ3OSOYTjElbQsUHHy5WIyv66-3cibA5gNtTCUVplsf2_TO2ud_imSNItN0xSUloTuCRUUYyxEydUjOKTuVHIEhydn5_PF3iBPZPeaj-hzYvilUHj5pVlSnbuhboZMUQdPRpVNf_ZRf8OgnS86fQpPEojMTvp1PoOD0D6Ho9kwu-0FxNl3fFK3ps2c2WyCz9waf-6y9Y_GhyIdtKbFiDklxmV45wYj5hViT5_dNl1_JrwGRuOEMNtdR04J6JTlFbLYrG63L-H69OvVbJ6niQq5wzhqlysjDI9ReFlGGzg1Q2TBi8iDrTwCGT-19SQKZ52tqyCcV0jJ6lgJU7uSe_EKRu26DceQqRg955bXtUHQZ7l1NGuzLiurZGB1OQY5yFC71G6cpl6s9JBXttSD7DXJXpcM4xA5hmLPt-kbbjzIoYYt0r-pjkav8CDvp2FPNW4RfSwxbVjfbzUnSzWVJVf_oOE0VoPq1sbwuleI_ZoxFEPoJ-o3_7G6j3A0v7q80Bdni_O38JjO9LmW72C0u7sP7xEP7eyHpO8_AYhDCqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan+capped+copper+oxide%2Fcopper+nanoparticles+encapsulated+microbial+resistant+nanocomposite+films&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Jayaramudu%2C+Tippabattini&rft.au=Varaprasad%2C+Kokkarachedu&rft.au=Pyarasani%2C+Radha+D.&rft.au=Reddy%2C+K.+Koteshwara&rft.date=2019-05-01&rft.issn=0141-8130&rft.volume=128&rft.spage=499&rft.epage=508&rft_id=info:doi/10.1016%2Fj.ijbiomac.2019.01.145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2019_01_145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |