Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films

Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanopa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 128; pp. 499 - 508
Main Authors Jayaramudu, Tippabattini, Varaprasad, Kokkarachedu, Pyarasani, Radha D., Reddy, K. Koteshwara, Kumar, Kanderi Dileep, Akbari-Fakhrabadi, A., Mangalaraja, R.V., Amalraj, John
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text
ISSN0141-8130
1879-0003
1879-0003
DOI10.1016/j.ijbiomac.2019.01.145

Cover

Loading…
Abstract Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications. •Chitosan capped (CuO and Cu) nanoparticles were prepared by facile chemical reduction.•The CHCuO and CHCu NPs were blended with CH to form nanocomposite films by solution casting method•The CHCuO and their nanocomposite films showed better antimicrobial activity than other materials•Developed nanocomposite films will be useful for antimicrobial applications.
AbstractList Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu²⁺ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications. •Chitosan capped (CuO and Cu) nanoparticles were prepared by facile chemical reduction.•The CHCuO and CHCu NPs were blended with CH to form nanocomposite films by solution casting method•The CHCuO and their nanocomposite films showed better antimicrobial activity than other materials•Developed nanocomposite films will be useful for antimicrobial applications.
Author Kumar, Kanderi Dileep
Akbari-Fakhrabadi, A.
Jayaramudu, Tippabattini
Pyarasani, Radha D.
Amalraj, John
Varaprasad, Kokkarachedu
Reddy, K. Koteshwara
Mangalaraja, R.V.
Author_xml – sequence: 1
  givenname: Tippabattini
  surname: Jayaramudu
  fullname: Jayaramudu, Tippabattini
  email: jtibbabattini@utalca.cl, mr.jayaramudu@gmail.com
  organization: Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile
– sequence: 2
  givenname: Kokkarachedu
  surname: Varaprasad
  fullname: Varaprasad, Kokkarachedu
  organization: Centre de Investigacion de Polimeros Avanzados, CIPA, avenida Collao 1202, Edificio de Laoratorios, Concepcion, Chile
– sequence: 3
  givenname: Radha D.
  surname: Pyarasani
  fullname: Pyarasani, Radha D.
  organization: Vicerrectoria de Investigacion y Postgrado, Universidad Catolica del Maule, 3460000 Talca, Chile
– sequence: 4
  givenname: K. Koteshwara
  surname: Reddy
  fullname: Reddy, K. Koteshwara
  organization: Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile
– sequence: 5
  givenname: Kanderi Dileep
  orcidid: 0000-0002-0533-4988
  surname: Kumar
  fullname: Kumar, Kanderi Dileep
  organization: Dept. of Microbiology, Sri Krishnadevaraya University, Ananthapuramu 515003, Andhra Pradesh, India
– sequence: 6
  givenname: A.
  surname: Akbari-Fakhrabadi
  fullname: Akbari-Fakhrabadi, A.
  organization: Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Beauchef, 851 Santiago, Chile
– sequence: 7
  givenname: R.V.
  surname: Mangalaraja
  fullname: Mangalaraja, R.V.
  organization: Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion 407-0409, Chile
– sequence: 8
  givenname: John
  surname: Amalraj
  fullname: Amalraj, John
  email: jamalraj@utalca.cl
  organization: Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30699337$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaWbS_oXgZTZ29LAtG7JIGdIHBLpp10KWrugdbMmRNKX991Uyky66mdVF4jtncb4tufDBAyHXjDaMsv523-B-wrBo03DKxoayhrXdG7JhgxxrSqm4IBvKWlYPTNBLsk1pX377jg3vyKWg_TgKITfE7X5iDkn7yuh1BVuZUE6swm-0cHt6eO3DqmNGM0OqwBc0HWadC76giWFCPVcREqasfX7BTVjWkDBD5XBe0nvy1uk5wYfTvSI_Pj18332pH799_rr7-FiblrJcj1po7pywHXUTcNpJwcAKx2FqLZfCDpPsnTCTmWQLwtixkEy6VmhpKLfiitwce9cYng6QslowGZhn7SEckuK8E6V2EOI8yuTYDh3lY0GvT-hhWsCqNeKi4x_1OmMB-iNQxkgpgvuHMKqefam9evWlnn0pylTxVYJ3_wUNZp0x-Bw1zufj98c4lE1_IUSVDBY_YDGCycoGPFfxF01LuBw
CitedBy_id crossref_primary_10_1016_j_nanoso_2020_100464
crossref_primary_10_1007_s11696_024_03785_9
crossref_primary_10_1016_j_arabjc_2021_103224
crossref_primary_10_3390_coatings10100944
crossref_primary_10_1016_j_molstruc_2022_133108
crossref_primary_10_1038_s41598_021_88907_z
crossref_primary_10_3390_foods13223674
crossref_primary_10_1016_j_ijbiomac_2024_137774
crossref_primary_10_3389_fendo_2023_1221705
crossref_primary_10_1016_j_carbpol_2021_117762
crossref_primary_10_1016_j_ijbiomac_2019_03_019
crossref_primary_10_1007_s10570_024_05960_3
crossref_primary_10_1021_acsabm_9b00834
crossref_primary_10_1016_j_matchemphys_2022_126299
crossref_primary_10_1016_j_carbpol_2023_121644
crossref_primary_10_1007_s41061_022_00364_y
crossref_primary_10_3390_md19120697
crossref_primary_10_1016_j_molstruc_2024_141124
crossref_primary_10_1016_j_rechem_2022_100635
crossref_primary_10_1016_j_jddst_2023_104549
crossref_primary_10_3390_polym15092167
crossref_primary_10_1016_j_colsurfb_2020_111216
crossref_primary_10_1002_jbm_b_35047
crossref_primary_10_3390_molecules27217261
crossref_primary_10_1016_j_matchemphys_2021_124583
crossref_primary_10_1134_S156009042560007X
crossref_primary_10_3390_polym15163370
crossref_primary_10_1016_j_ijbiomac_2024_131253
crossref_primary_10_3390_ijms22094595
crossref_primary_10_1016_j_ijbiomac_2024_133043
crossref_primary_10_1186_s12951_020_00704_4
crossref_primary_10_3389_fbioe_2021_650598
crossref_primary_10_1016_j_chemosphere_2022_136338
crossref_primary_10_1016_j_ijbiomac_2019_09_143
crossref_primary_10_2174_2211738510666220823152415
crossref_primary_10_1016_j_carbpol_2020_117302
crossref_primary_10_14233_ajchem_2022_23985
crossref_primary_10_1016_j_ijbiomac_2021_07_139
crossref_primary_10_1016_j_bcab_2022_102574
crossref_primary_10_3390_ijms21072637
crossref_primary_10_1016_j_jwpe_2023_103556
crossref_primary_10_1016_j_nxnano_2024_100077
crossref_primary_10_7717_peerj_13386
crossref_primary_10_1016_j_biortech_2021_125568
crossref_primary_10_1021_acsinfecdis_1c00660
crossref_primary_10_1016_j_ceramint_2024_05_389
crossref_primary_10_1002_app_53559
crossref_primary_10_3390_ijms241310503
crossref_primary_10_1016_j_microc_2020_104855
crossref_primary_10_1016_j_molliq_2019_112087
crossref_primary_10_1016_j_porgcoat_2022_107269
crossref_primary_10_1002_jsf2_86
crossref_primary_10_1002_slct_202402505
crossref_primary_10_1016_j_arabjc_2021_103661
crossref_primary_10_1016_j_molliq_2024_126541
crossref_primary_10_3390_nano12111829
crossref_primary_10_1002_pat_6146
crossref_primary_10_1016_j_ijbiomac_2023_124898
crossref_primary_10_1002_admi_202400461
crossref_primary_10_1016_j_ijbiomac_2019_12_096
crossref_primary_10_1016_j_eurpolymj_2022_111293
crossref_primary_10_1016_j_rsurfi_2022_100048
crossref_primary_10_3390_md18010064
crossref_primary_10_1016_j_ijbiomac_2023_127027
crossref_primary_10_1088_2053_1591_acad67
crossref_primary_10_1016_j_ijbiomac_2023_124954
crossref_primary_10_2139_ssrn_4126735
crossref_primary_10_3390_membranes12020215
crossref_primary_10_1016_j_carbpol_2020_116243
crossref_primary_10_1021_acsabm_3c00958
crossref_primary_10_1038_s41598_022_17332_7
crossref_primary_10_1007_s10924_022_02374_9
crossref_primary_10_1111_1541_4337_13136
crossref_primary_10_1016_j_heliyon_2024_e35588
crossref_primary_10_1016_j_envres_2022_114986
crossref_primary_10_1016_j_mtcomm_2024_111149
crossref_primary_10_1016_j_ijbiomac_2020_05_198
crossref_primary_10_1016_j_msec_2020_111843
crossref_primary_10_1016_j_foodchem_2020_127378
crossref_primary_10_1002_adhm_202203054
crossref_primary_10_1016_j_fbio_2022_101570
crossref_primary_10_1016_j_ijbiomac_2021_04_059
crossref_primary_10_1016_j_chemosphere_2020_128185
crossref_primary_10_3390_polym14122335
crossref_primary_10_1016_j_colsurfb_2024_113861
crossref_primary_10_1038_s41598_021_98051_3
crossref_primary_10_3390_su12114587
crossref_primary_10_1016_j_inoche_2023_111222
crossref_primary_10_1016_j_reactfunctpolym_2021_105059
crossref_primary_10_1002_app_56612
crossref_primary_10_1016_j_matlet_2022_133694
crossref_primary_10_1155_2022_7557825
crossref_primary_10_1016_j_ijbiomac_2022_05_143
crossref_primary_10_1016_j_mseb_2023_116467
crossref_primary_10_1016_j_apsusc_2019_145032
crossref_primary_10_1007_s10924_020_01999_y
crossref_primary_10_1002_app_54440
crossref_primary_10_1002_smll_202407195
crossref_primary_10_1016_j_reactfunctpolym_2019_104372
crossref_primary_10_1016_j_mtcomm_2023_107059
crossref_primary_10_1039_D3RA06619C
crossref_primary_10_1016_j_carbpol_2020_116825
crossref_primary_10_1016_j_carbpol_2022_119974
crossref_primary_10_3390_pr12122772
Cites_doi 10.1111/j.1472-765X.2011.03069.x
10.1016/j.actbio.2018.09.013
10.1016/j.carbpol.2018.08.001
10.1016/j.carbpol.2018.03.046
10.1016/j.carbpol.2017.06.035
10.1016/j.carbpol.2014.05.081
10.1016/j.ijfoodmicro.2010.09.012
10.1016/j.carbpol.2018.04.007
10.1002/app.43027
10.1016/j.carbpol.2018.07.030
10.1016/j.msec.2016.06.052
10.1016/j.elecom.2014.11.016
10.1016/j.msec.2018.07.067
10.1007/s00339-016-0193-6
10.1021/acs.iecr.6b04692
10.1016/j.colsurfa.2015.11.034
10.1016/j.carbpol.2016.07.045
10.1016/j.carbpol.2016.05.045
10.1016/j.carbpol.2018.07.026
10.1016/j.nimb.2009.01.049
10.1016/j.ijbiomac.2016.01.057
10.1016/j.carbpol.2017.12.043
10.1016/j.carbpol.2012.12.006
10.1039/C3BM60159E
10.1016/j.msec.2018.10.062
10.1007/s11671-009-9264-3
10.1016/j.carbon.2011.12.063
10.1016/j.carbpol.2015.09.001
10.1088/2043-6262/2/1/015009
10.1016/j.apsusc.2017.06.280
10.1016/j.ijbiomac.2018.08.057
10.1016/j.seppur.2016.12.006
10.1016/j.saa.2013.12.020
10.1016/j.ijbiomac.2018.08.187
10.1016/j.carbpol.2017.04.070
10.1016/j.msec.2016.06.037
10.1016/j.colsurfa.2014.10.031
10.1016/j.carbpol.2017.04.077
10.1002/jbm.a.30414
10.1016/j.matlet.2008.11.023
10.1016/j.carbpol.2012.12.035
10.1016/j.carbpol.2016.09.008
10.1016/j.snb.2018.05.173
10.1021/acs.biomac.7b01180
10.1002/app.43811
10.1016/j.actbio.2015.03.033
10.1016/j.ijbiomac.2015.12.026
10.1016/j.msec.2016.08.041
10.1016/j.molliq.2016.06.080
10.1016/j.ijbiomac.2015.10.018
10.1016/j.jscs.2015.12.004
10.1007/s10812-005-0060-2
10.1021/ja029267j
10.1016/j.carbpol.2018.07.090
10.1016/j.msec.2014.08.031
10.1016/j.ijbiomac.2017.12.022
10.1016/j.ijbiomac.2016.03.026
10.1016/j.carbpol.2018.08.124
10.1021/acsami.7b13750
10.1016/j.cplett.2017.10.017
10.1557/opl.2012.645
10.1016/j.solidstatesciences.2012.09.002
10.1016/j.carbpol.2018.07.081
10.1016/j.carbpol.2018.01.033
10.1016/j.carbpol.2018.03.099
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019. Published by Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2019.01.145
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
EndPage 508
ExternalDocumentID 30699337
10_1016_j_ijbiomac_2019_01_145
S0141813018371824
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
UNMZH
~02
~G-
29J
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
R2-
RIG
SBG
SEW
SSH
UHS
WUQ
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c401t-9a3a2ff3d50fbe205731ed3f2eb4d273d8b76f3cbcb74e3cd9d5017f43a7c02d3
IEDL.DBID .~1
ISSN 0141-8130
1879-0003
IngestDate Fri Jul 11 02:38:31 EDT 2025
Mon Jul 21 09:25:44 EDT 2025
Wed Feb 19 02:35:15 EST 2025
Thu Apr 24 22:56:10 EDT 2025
Tue Jul 01 01:03:35 EDT 2025
Fri Feb 23 02:50:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CHCu NPs
CHCuO NPs
Chitosan
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-9a3a2ff3d50fbe205731ed3f2eb4d273d8b76f3cbcb74e3cd9d5017f43a7c02d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0533-4988
PMID 30699337
PQID 2179485029
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2253205833
proquest_miscellaneous_2179485029
pubmed_primary_30699337
crossref_primary_10_1016_j_ijbiomac_2019_01_145
crossref_citationtrail_10_1016_j_ijbiomac_2019_01_145
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2019_01_145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Reddy, Kim (bb0300) 2016; 122
Ayala, de O. Vercik, Menezes, Vercik (bb0095) 2012; 1386
Nataraj, Sakkara, Meghwal, Reddy (bb0125) 2018; 120
Salavati-Niasari, Davar (bb0250) 2009; 63
Dizaj, Lotfipour, Barzegar-Jalali, Zarrintan, Adibkia (bb0305) 2014; 44
Cai, Ye, Wang, Lin, Lin, Zhang, Wu (bb0180) 2016; 151
Raghavendra, Jayaramudu, Varaprasad, Sadiku, Ray, Mohana Raju (bb0065) 2013; 93
Yu, Li, Chu, Zhang (bb0120) 2018; 184
Ahmed, Tariq, Ali, Asghar, Noorunnisa Khanam, Augustine, Hasan (bb0290) 2018; 120
Bajaj, Joh, Jo, Park, Yi, Lee (bb0275) 2018; 429
Meenakshi, Devi, Pandian, Devendiran, Selvaraj (bb0005) 2016; 69
Jayaramudu, Raghavendra, Varaprasad, Reddy, Reddy, Sudhakar, Sadiku (bb0055) 2016; 133
Zhang, Zhang, Pan, Xu, Yan, Liu (bb0210) 2017; 176
Jain, Jain, Devra (bb0260) 2017; 21
Hoogesteijn von Reitzenstein, Bi, Yang, Hristovski, Westerhoff (bb0060) 2016; 133
Li, Lu, Zhou, Yu, Lu, Xiao, Dai, Wu, Lan (bb0085) 2017; 18
Chowdhury, Shaik, Chakraborty (bb0050) 2015; 466
Wu, Huang, Li, Xiao, Wang (bb0135) 2018; 199
Delgado, Quijada, Palma, Palza (bb0325) 2011; 53
Raghavendra, Jung, Kim, Seo (bb0070) 2016; 86
Raghavendra, Jung, Kim, Varaprasad, Seo (bb0145) 2016; 152
Fan, Ma, Mao, Zhang, Tan (bb0195) 2015; 20
Wang, Huang, He, Huang, Wu, Hou, Liu, Yang, Zou, Huang (bb0280) 2012; 50
Bogdanović, Dimitrijević, Škapin, Popović, Rakočević, Leskovac, Petrović, Stoiljković, Vodnik (bb0320) 2018; 93
Kong, Gao, Cao, Gong, Zhao, Zhang (bb0265) 2005; 75A
Tamayo, Azócar, Kogan, Riveros, Páez (bb0310) 2016; 69
Urbina, Guaresti, Requies, Gabilondo, Eceiza, Corcuera, Retegi (bb0200) 2018; 193
Raveendran, Fu, Wallen (bb0100) 2003; 125
Khan, Ali, Kamal, Anwar, Asiri, Seo (bb0140) 2016; 88
Dang, Le, Fribourg-Blanc, Dang (bb0245) 2011; 2
Engkagul, Sereemaspun, Chirachanchai (bb0205) 2018; 200
Fazio, Santoro, Lentini, Franco, Guglielmino, Neri (bb0020) 2016; 490
Raghavendra, Jung, Kim, Seo (bb0215) 2017; 172
Popok, Stepanov, Odzhaev (bb0040) 2005; 72
Govindaraju, Samal, Yun (bb0010) 2016; 69
Sreeju, Rufus, Philip (bb0025) 2016; 221
Jayaramudu, Raghavendra, Varaprasad, Sadiku, Raju (bb0225) 2013; 92
Shahraki, Samareh Delarami (bb0270) 2018; 200
Lu, Lu, Zou, Liu, Rong, Li, Dai, Wu, Lan (bb0285) 2017; 173
Kong, Chen, Xing, Park (bb0330) 2010; 144
Abiraman, Balasubramanian (bb0220) 2017; 56
Sankar, Manikandan, Malarvizhi, Fathima, Shivashangari, Ravikumar (bb0240) 2014; 121
Huang, Xu, Li, Cheng, Wang, Sun (bb0175) 2019; 96
Dinu, Dinu, Lazar, Dragan (bb0160) 2018; 186
Zeeshan, Mutahir, Iqbal, Ali, Iqbal, Ijaz, Sharif, Shah, Chaudhry, Yar, Luan, Khan (bb0295) 2018; 193
Truong, Ablett, Gilbert, Bowen, Richardson, Hoyland, Dove (bb0190) 2014; 2
Fan, Chen, Pang, Lu, Zhao, Liu, Fang (bb0030) 2017; 689
Jayaramudu, Varaprasad, Kim, Kafy, Kim, Kim (bb0230) 2017; 171
Yu, Xie, Chen, Li, Zhang (bb0255) 2009; 4
Haider, Ali, Haider, Al-Masry, Al-Zeghayer (bb0150) 2018; 199
Marković, Deeks, Nunney, Radovanović, Radoičić, Šaponjić, Radetić (bb0315) 2018; 200
Qin, Liao, Dong, Wu, Hou, Liu (bb0045) 2009; 267
Farhoudian, Yadollahi, Namazi (bb0185) 2016; 82
Varukattu, Vivek, Rejeeth, Thangam, Ponraj, Sharma, Kannan (bb0170) 2018
Lu, Li, Zhu, Wang, Li, Lin, Hu, Zhang, Yin, Xia, Mao (bb0165) 2018; 10
Ulutürk, Alemdar (bb0235) 2018; 193
Figiela, Wysokowski, Galinski, Jesionowski, Stepniak (bb0155) 2018; 272
Shang, Min, Hu, Wang, Liu, Hu (bb0015) 2013; 15
Foresti, Vázquez, Boury (bb0075) 2017; 157
Chen, Zhan, Wang, Han, Tao, Luo, Ma, Wang, Li, Fan, Li, Deng, Cao (bb0110) 2018
Ghayempour, Montazer, Mahmoudi Rad (bb0080) 2016; 136
Haider, Haider, Kang, Kumar, Kummara, Kamal, Han (bb0090) 2018; 108
Raghavendra, Jung, Kim, Seo (bb0105) 2016; 84
Zou, Chen, Zhang, Li, Sun, Gui, Du, Chen (bb0115) 2018; 202
Zain, Stapley, Shama (bb0130) 2014; 112
Nasretdinova, Fazleeva, Mukhitova, Nizameev, Kadirov, Ziganshina, Yanilkin (bb0035) 2015; 50
Reddy (10.1016/j.ijbiomac.2019.01.145_bb0300) 2016; 122
Dinu (10.1016/j.ijbiomac.2019.01.145_bb0160) 2018; 186
Hoogesteijn von Reitzenstein (10.1016/j.ijbiomac.2019.01.145_bb0060) 2016; 133
Lu (10.1016/j.ijbiomac.2019.01.145_bb0165) 2018; 10
Urbina (10.1016/j.ijbiomac.2019.01.145_bb0200) 2018; 193
Lu (10.1016/j.ijbiomac.2019.01.145_bb0285) 2017; 173
Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0065) 2013; 93
Dang (10.1016/j.ijbiomac.2019.01.145_bb0245) 2011; 2
Zeeshan (10.1016/j.ijbiomac.2019.01.145_bb0295) 2018; 193
Tamayo (10.1016/j.ijbiomac.2019.01.145_bb0310) 2016; 69
Sankar (10.1016/j.ijbiomac.2019.01.145_bb0240) 2014; 121
Ayala (10.1016/j.ijbiomac.2019.01.145_bb0095) 2012; 1386
Varukattu (10.1016/j.ijbiomac.2019.01.145_bb0170) 2018
Abiraman (10.1016/j.ijbiomac.2019.01.145_bb0220) 2017; 56
Foresti (10.1016/j.ijbiomac.2019.01.145_bb0075) 2017; 157
Chen (10.1016/j.ijbiomac.2019.01.145_bb0110) 2018
Zain (10.1016/j.ijbiomac.2019.01.145_bb0130) 2014; 112
Jain (10.1016/j.ijbiomac.2019.01.145_bb0260) 2017; 21
Qin (10.1016/j.ijbiomac.2019.01.145_bb0045) 2009; 267
Salavati-Niasari (10.1016/j.ijbiomac.2019.01.145_bb0250) 2009; 63
Cai (10.1016/j.ijbiomac.2019.01.145_bb0180) 2016; 151
Bogdanović (10.1016/j.ijbiomac.2019.01.145_bb0320) 2018; 93
Kong (10.1016/j.ijbiomac.2019.01.145_bb0265) 2005; 75A
Haider (10.1016/j.ijbiomac.2019.01.145_bb0150) 2018; 199
Yu (10.1016/j.ijbiomac.2019.01.145_bb0255) 2009; 4
Haider (10.1016/j.ijbiomac.2019.01.145_bb0090) 2018; 108
Zou (10.1016/j.ijbiomac.2019.01.145_bb0115) 2018; 202
Marković (10.1016/j.ijbiomac.2019.01.145_bb0315) 2018; 200
Figiela (10.1016/j.ijbiomac.2019.01.145_bb0155) 2018; 272
Dizaj (10.1016/j.ijbiomac.2019.01.145_bb0305) 2014; 44
Popok (10.1016/j.ijbiomac.2019.01.145_bb0040) 2005; 72
Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0105) 2016; 84
Kong (10.1016/j.ijbiomac.2019.01.145_bb0330) 2010; 144
Zhang (10.1016/j.ijbiomac.2019.01.145_bb0210) 2017; 176
Bajaj (10.1016/j.ijbiomac.2019.01.145_bb0275) 2018; 429
Raveendran (10.1016/j.ijbiomac.2019.01.145_bb0100) 2003; 125
Delgado (10.1016/j.ijbiomac.2019.01.145_bb0325) 2011; 53
Fazio (10.1016/j.ijbiomac.2019.01.145_bb0020) 2016; 490
Yu (10.1016/j.ijbiomac.2019.01.145_bb0120) 2018; 184
Khan (10.1016/j.ijbiomac.2019.01.145_bb0140) 2016; 88
Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0145) 2016; 152
Fan (10.1016/j.ijbiomac.2019.01.145_bb0195) 2015; 20
Govindaraju (10.1016/j.ijbiomac.2019.01.145_bb0010) 2016; 69
Ghayempour (10.1016/j.ijbiomac.2019.01.145_bb0080) 2016; 136
Farhoudian (10.1016/j.ijbiomac.2019.01.145_bb0185) 2016; 82
Ulutürk (10.1016/j.ijbiomac.2019.01.145_bb0235) 2018; 193
Fan (10.1016/j.ijbiomac.2019.01.145_bb0030) 2017; 689
Jayaramudu (10.1016/j.ijbiomac.2019.01.145_bb0225) 2013; 92
Shang (10.1016/j.ijbiomac.2019.01.145_bb0015) 2013; 15
Nataraj (10.1016/j.ijbiomac.2019.01.145_bb0125) 2018; 120
Sreeju (10.1016/j.ijbiomac.2019.01.145_bb0025) 2016; 221
Nasretdinova (10.1016/j.ijbiomac.2019.01.145_bb0035) 2015; 50
Engkagul (10.1016/j.ijbiomac.2019.01.145_bb0205) 2018; 200
Wang (10.1016/j.ijbiomac.2019.01.145_bb0280) 2012; 50
Shahraki (10.1016/j.ijbiomac.2019.01.145_bb0270) 2018; 200
Meenakshi (10.1016/j.ijbiomac.2019.01.145_bb0005) 2016; 69
Jayaramudu (10.1016/j.ijbiomac.2019.01.145_bb0230) 2017; 171
Huang (10.1016/j.ijbiomac.2019.01.145_bb0175) 2019; 96
Jayaramudu (10.1016/j.ijbiomac.2019.01.145_bb0055) 2016; 133
Chowdhury (10.1016/j.ijbiomac.2019.01.145_bb0050) 2015; 466
Ahmed (10.1016/j.ijbiomac.2019.01.145_bb0290) 2018; 120
Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0215) 2017; 172
Raghavendra (10.1016/j.ijbiomac.2019.01.145_bb0070) 2016; 86
Truong (10.1016/j.ijbiomac.2019.01.145_bb0190) 2014; 2
Li (10.1016/j.ijbiomac.2019.01.145_bb0085) 2017; 18
Wu (10.1016/j.ijbiomac.2019.01.145_bb0135) 2018; 199
References_xml – volume: 112
  start-page: 195
  year: 2014
  end-page: 202
  ident: bb0130
  article-title: Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications
  publication-title: Carbohydr. Polym.
– volume: 176
  start-page: 164
  year: 2017
  end-page: 172
  ident: bb0210
  article-title: In situ formation of copper nanoparticles in carboxylated chitosan layer: preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties
  publication-title: Sep. Purif. Technol.
– volume: 144
  start-page: 51
  year: 2010
  end-page: 63
  ident: bb0330
  article-title: Antimicrobial properties of chitosan and mode of action: a state of the art review
  publication-title: Int. J. Food Microbiol.
– volume: 92
  start-page: 2193
  year: 2013
  end-page: 2200
  ident: bb0225
  article-title: Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria
  publication-title: Carbohydr. Polym.
– volume: 121
  start-page: 746
  year: 2014
  end-page: 750
  ident: bb0240
  article-title: Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 82
  start-page: 837
  year: 2016
  end-page: 843
  ident: bb0185
  article-title: Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads
  publication-title: Int. J. Biol. Macromol.
– volume: 202
  start-page: 246
  year: 2018
  end-page: 257
  ident: bb0115
  article-title: Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties
  publication-title: Carbohydr. Polym.
– volume: 20
  start-page: 60
  year: 2015
  end-page: 68
  ident: bb0195
  article-title: Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering
  publication-title: Acta Biomater.
– volume: 200
  start-page: 173
  year: 2018
  end-page: 182
  ident: bb0315
  article-title: Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids
  publication-title: Carbohydr. Polym.
– volume: 689
  start-page: 162
  year: 2017
  end-page: 168
  ident: bb0030
  article-title: Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co
  publication-title: Chem. Phys. Lett.
– volume: 69
  start-page: 85
  year: 2016
  end-page: 94
  ident: bb0005
  article-title: Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples
  publication-title: Mater. Sci. Eng. C
– volume: 63
  start-page: 441
  year: 2009
  end-page: 443
  ident: bb0250
  article-title: Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor
  publication-title: Mater. Lett.
– volume: 171
  start-page: 183
  year: 2017
  end-page: 192
  ident: bb0230
  article-title: Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties
  publication-title: Carbohydr. Polym.
– volume: 21
  start-page: 803
  year: 2017
  end-page: 810
  ident: bb0260
  article-title: Copper nanoparticles catalyzed oxidation of threonine by peroxomonosulfate
  publication-title: J. Saudi Chem. Soc.
– volume: 151
  start-page: 130
  year: 2016
  end-page: 134
  ident: bb0180
  article-title: Preparation of copper-chelate quaternized carboxymethyl chitosan/organic rectorite nanocomposites for algae inhibition
  publication-title: Carbohydr. Polym.
– volume: 122
  start-page: 652
  year: 2016
  ident: bb0300
  article-title: Facile synthesis of silver nanoparticles and its antibacterial activity against Escherichia coli and unknown bacteria on mobile phone touch surfaces/computer keyboards
  publication-title: Appl. Phys. A Mater. Sci. Process.
– volume: 199
  start-page: 210
  year: 2018
  end-page: 218
  ident: bb0135
  article-title: Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging
  publication-title: Carbohydr. Polym.
– volume: 69
  start-page: 366
  year: 2016
  end-page: 372
  ident: bb0010
  article-title: Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation
  publication-title: Mater. Sci. Eng. C
– volume: 96
  start-page: 129
  year: 2019
  end-page: 137
  ident: bb0175
  article-title: Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy
  publication-title: Mater. Sci. Eng. C
– volume: 125
  start-page: 13940
  year: 2003
  end-page: 13941
  ident: bb0100
  article-title: Completely “green” synthesis and stabilization of metal nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 490
  start-page: 98
  year: 2016
  end-page: 103
  ident: bb0020
  article-title: Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 199
  start-page: 406
  year: 2018
  end-page: 414
  ident: bb0150
  article-title: Novel route for amine grafting to chitosan electrospun nanofibers membrane for the removal of copper and lead ions from aqueous medium
  publication-title: Carbohydr. Polym.
– volume: 15
  start-page: 17
  year: 2013
  end-page: 23
  ident: bb0015
  article-title: Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation
  publication-title: Solid State Sci.
– volume: 75A
  start-page: 275
  year: 2005
  end-page: 282
  ident: bb0265
  article-title: Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds
  publication-title: J. Biomed. Mater. Res. A
– volume: 193
  start-page: 307
  year: 2018
  end-page: 315
  ident: bb0235
  article-title: Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel
  publication-title: Carbohydr. Polym.
– volume: 429
  start-page: 253
  year: 2018
  end-page: 257
  ident: bb0275
  article-title: Enhanced reactive H
  publication-title: Appl. Surf. Sci.
– volume: 184
  start-page: 214
  year: 2018
  end-page: 220
  ident: bb0120
  article-title: Silica in situ enhanced PVA/chitosan biodegradable films for food packages
  publication-title: Carbohydr. Polym.
– start-page: 0
  year: 2018
  end-page: 10
  ident: bb0170
  article-title: Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: a polymeric smart intracellular delivery system for doxorubicin in breast cancer cells
  publication-title: Arab. J. Chem.
– volume: 136
  start-page: 232
  year: 2016
  end-page: 241
  ident: bb0080
  article-title: Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties
  publication-title: Carbohydr. Polym.
– volume: 56
  start-page: 1498
  year: 2017
  end-page: 1508
  ident: bb0220
  article-title: Synthesis and characterization of large-scale (<2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating
  publication-title: Ind. Eng. Chem. Res.
– volume: 120
  start-page: 1256
  year: 2018
  end-page: 1264
  ident: bb0125
  article-title: Crosslinked chitosan films with controllable properties for commercial applications
  publication-title: Int. J. Biol. Macromol.
– volume: 193
  start-page: 362
  year: 2018
  end-page: 372
  ident: bb0200
  article-title: Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters
  publication-title: Carbohydr. Polym.
– volume: 157
  start-page: 447
  year: 2017
  end-page: 467
  ident: bb0075
  article-title: Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances
  publication-title: Carbohydr. Polym.
– volume: 221
  start-page: 1008
  year: 2016
  end-page: 1021
  ident: bb0025
  article-title: Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications
  publication-title: J. Mol. Liq.
– volume: 133
  year: 2016
  ident: bb0060
  article-title: Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats
  publication-title: J. Appl. Polym. Sci.
– volume: 133
  year: 2016
  ident: bb0055
  article-title: Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process
  publication-title: J. Appl. Polym. Sci.
– volume: 272
  start-page: 296
  year: 2018
  end-page: 307
  ident: bb0155
  article-title: Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing
  publication-title: Sensors Actuators B Chem.
– volume: 44
  start-page: 278
  year: 2014
  end-page: 284
  ident: bb0305
  article-title: Antimicrobial activity of the metals and metal oxide nanoparticles
  publication-title: Mater. Sci. Eng. C
– volume: 53
  start-page: 50
  year: 2011
  end-page: 54
  ident: bb0325
  article-title: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent
  publication-title: Lett. Appl. Microbiol.
– volume: 69
  start-page: 1391
  year: 2016
  end-page: 1409
  ident: bb0310
  article-title: Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces
  publication-title: Mater. Sci. Eng. C
– volume: 18
  start-page: 3766
  year: 2017
  end-page: 3775
  ident: bb0085
  article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing
  publication-title: Biomacromolecules
– volume: 93
  start-page: 553
  year: 2013
  end-page: 560
  ident: bb0065
  article-title: Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds
  publication-title: Carbohydr. Polym.
– volume: 4
  start-page: 465
  year: 2009
  end-page: 470
  ident: bb0255
  article-title: Synthesis and characterization of monodispersed copper colloids in polar solvents
  publication-title: Nanoscale Res. Lett.
– volume: 1386
  year: 2012
  ident: bb0095
  article-title: A simple and green method for synthesis of Ag and Au nanoparticles using biopolymers and sugars as reducing agent
  publication-title: MRS Proc.
– volume: 200
  start-page: 211
  year: 2018
  end-page: 220
  ident: bb0270
  article-title: Magnetic chitosan-(
  publication-title: Carbohydr. Polym.
– volume: 193
  start-page: 9
  year: 2018
  end-page: 18
  ident: bb0295
  article-title: Ihtesham-ur-Rehman, Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair
  publication-title: Carbohydr. Polym.
– volume: 84
  start-page: 281
  year: 2016
  end-page: 288
  ident: bb0105
  article-title: Microwave assisted antibacterial chitosan–silver nanocomposite films
  publication-title: Int. J. Biol. Macromol.
– volume: 86
  start-page: 126
  year: 2016
  end-page: 128
  ident: bb0070
  article-title: Step-reduced synthesis of starch-silver nanoparticles
  publication-title: Int. J. Biol. Macromol.
– volume: 120
  start-page: 385
  year: 2018
  end-page: 393
  ident: bb0290
  article-title: Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 173
  start-page: 556
  year: 2017
  end-page: 565
  ident: bb0285
  article-title: In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity
  publication-title: Carbohydr. Polym.
– volume: 200
  start-page: 616
  year: 2018
  end-page: 623
  ident: bb0205
  article-title: One pot preparation of chitosan/hyaluronic acid-based triple network hydrogel via in situ click reaction, metal coordination and polyion complexation in water
  publication-title: Carbohydr. Polym.
– volume: 50
  start-page: 2119
  year: 2012
  end-page: 2125
  ident: bb0280
  article-title: Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene
  publication-title: Carbon
– volume: 50
  start-page: 69
  year: 2015
  end-page: 72
  ident: bb0035
  article-title: Electrochemical synthesis of silver nanoparticles in solution
  publication-title: Electrochem. Commun.
– volume: 10
  start-page: 127
  year: 2018
  end-page: 138
  ident: bb0165
  article-title: Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 172
  start-page: 78
  year: 2017
  end-page: 84
  ident: bb0215
  article-title: Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties
  publication-title: Carbohydr. Polym.
– volume: 88
  start-page: 113
  year: 2016
  end-page: 119
  ident: bb0140
  article-title: CuO embedded chitosan spheres as antibacterial adsorbent for dyes
  publication-title: Int. J. Biol. Macromol.
– volume: 152
  start-page: 558
  year: 2016
  end-page: 565
  ident: bb0145
  article-title: Identification of silver cubic structures during ultrasonication of chitosan AgNO
  publication-title: Carbohydr. Polym.
– volume: 267
  start-page: 1077
  year: 2009
  end-page: 1080
  ident: bb0045
  article-title: Ag/Fe:TiO
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 2
  start-page: 167
  year: 2014
  end-page: 175
  ident: bb0190
  article-title: In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering
  publication-title: Biomater. Sci.
– volume: 186
  start-page: 140
  year: 2018
  end-page: 149
  ident: bb0160
  article-title: Chitosan-based ion-imprinted cryo-composites with excellent selectivity for copper ions
  publication-title: Carbohydr. Polym.
– volume: 2
  year: 2011
  ident: bb0245
  article-title: Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 108
  start-page: 455
  year: 2018
  end-page: 461
  ident: bb0090
  article-title: A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent
  publication-title: Int. J. Biol. Macromol.
– year: 2018
  ident: bb0110
  article-title: Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats
  publication-title: Acta Biomater.
– volume: 72
  start-page: 229
  year: 2005
  end-page: 234
  ident: bb0040
  article-title: Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties
  publication-title: J. Appl. Spectrosc.
– volume: 93
  start-page: 49
  year: 2018
  end-page: 60
  ident: bb0320
  article-title: Copper-polyaniline nanocomposite: role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation
  publication-title: Mater. Sci. Eng. C
– volume: 466
  start-page: 189
  year: 2015
  end-page: 196
  ident: bb0050
  article-title: Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 53
  start-page: 50
  year: 2011
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0325
  article-title: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2011.03069.x
– year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0110
  article-title: Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.09.013
– volume: 200
  start-page: 173
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0315
  article-title: Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.08.001
– volume: 193
  start-page: 9
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0295
  article-title: Ihtesham-ur-Rehman, Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.03.046
– volume: 173
  start-page: 556
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0285
  article-title: In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.035
– volume: 112
  start-page: 195
  year: 2014
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0130
  article-title: Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.05.081
– volume: 144
  start-page: 51
  year: 2010
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0330
  article-title: Antimicrobial properties of chitosan and mode of action: a state of the art review
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2010.09.012
– volume: 193
  start-page: 362
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0200
  article-title: Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.04.007
– volume: 133
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0055
  article-title: Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.43027
– volume: 199
  start-page: 210
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0135
  article-title: Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.07.030
– volume: 69
  start-page: 366
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0010
  article-title: Superior antibacterial activity of GlcN-AuNP-GO by ultraviolet irradiation
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.06.052
– volume: 50
  start-page: 69
  year: 2015
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0035
  article-title: Electrochemical synthesis of silver nanoparticles in solution
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.11.016
– volume: 93
  start-page: 49
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0320
  article-title: Copper-polyaniline nanocomposite: role of physicochemical properties on the antimicrobial activity and genotoxicity evaluation
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.07.067
– volume: 122
  start-page: 652
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0300
  article-title: Facile synthesis of silver nanoparticles and its antibacterial activity against Escherichia coli and unknown bacteria on mobile phone touch surfaces/computer keyboards
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-016-0193-6
– volume: 56
  start-page: 1498
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0220
  article-title: Synthesis and characterization of large-scale (<2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04692
– volume: 490
  start-page: 98
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0020
  article-title: Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2015.11.034
– volume: 152
  start-page: 558
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0145
  article-title: Identification of silver cubic structures during ultrasonication of chitosan AgNO3 solution
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.07.045
– volume: 151
  start-page: 130
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0180
  article-title: Preparation of copper-chelate quaternized carboxymethyl chitosan/organic rectorite nanocomposites for algae inhibition
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.05.045
– volume: 199
  start-page: 406
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0150
  article-title: Novel route for amine grafting to chitosan electrospun nanofibers membrane for the removal of copper and lead ions from aqueous medium
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.07.026
– volume: 267
  start-page: 1077
  year: 2009
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0045
  article-title: Ag/Fe:TiO2 nano-catalysts prepared by Fe ion implantation and Ag nanoparticle deposition by electron beam irradiation
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2009.01.049
– volume: 86
  start-page: 126
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0070
  article-title: Step-reduced synthesis of starch-silver nanoparticles
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.01.057
– volume: 184
  start-page: 214
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0120
  article-title: Silica in situ enhanced PVA/chitosan biodegradable films for food packages
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.12.043
– volume: 92
  start-page: 2193
  year: 2013
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0225
  article-title: Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.12.006
– volume: 2
  start-page: 167
  year: 2014
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0190
  article-title: In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering
  publication-title: Biomater. Sci.
  doi: 10.1039/C3BM60159E
– volume: 96
  start-page: 129
  year: 2019
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0175
  article-title: Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.10.062
– volume: 4
  start-page: 465
  year: 2009
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0255
  article-title: Synthesis and characterization of monodispersed copper colloids in polar solvents
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-009-9264-3
– volume: 50
  start-page: 2119
  year: 2012
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0280
  article-title: Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.12.063
– volume: 136
  start-page: 232
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0080
  article-title: Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.09.001
– volume: 2
  year: 2011
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0245
  article-title: Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
  doi: 10.1088/2043-6262/2/1/015009
– volume: 429
  start-page: 253
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0275
  article-title: Enhanced reactive H2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.280
– volume: 120
  start-page: 385
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0290
  article-title: Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.08.057
– volume: 176
  start-page: 164
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0210
  article-title: In situ formation of copper nanoparticles in carboxylated chitosan layer: preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.12.006
– volume: 121
  start-page: 746
  year: 2014
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0240
  article-title: Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2013.12.020
– volume: 120
  start-page: 1256
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0125
  article-title: Crosslinked chitosan films with controllable properties for commercial applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.08.187
– volume: 172
  start-page: 78
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0215
  article-title: Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.04.070
– volume: 69
  start-page: 85
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0005
  article-title: Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.06.037
– volume: 466
  start-page: 189
  year: 2015
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0050
  article-title: Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2014.10.031
– volume: 171
  start-page: 183
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0230
  article-title: Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.04.077
– volume: 75A
  start-page: 275
  year: 2005
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0265
  article-title: Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.30414
– volume: 63
  start-page: 441
  year: 2009
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0250
  article-title: Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.11.023
– volume: 93
  start-page: 553
  year: 2013
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0065
  article-title: Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.12.035
– volume: 157
  start-page: 447
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0075
  article-title: Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.09.008
– volume: 272
  start-page: 296
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0155
  article-title: Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2018.05.173
– volume: 18
  start-page: 3766
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0085
  article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01180
– volume: 133
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0060
  article-title: Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.43811
– volume: 20
  start-page: 60
  year: 2015
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0195
  article-title: Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.03.033
– volume: 84
  start-page: 281
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0105
  article-title: Microwave assisted antibacterial chitosan–silver nanocomposite films
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.12.026
– volume: 69
  start-page: 1391
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0310
  article-title: Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.08.041
– volume: 221
  start-page: 1008
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0025
  article-title: Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.06.080
– start-page: 0
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0170
  article-title: Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: a polymeric smart intracellular delivery system for doxorubicin in breast cancer cells
  publication-title: Arab. J. Chem.
– volume: 82
  start-page: 837
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0185
  article-title: Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.10.018
– volume: 21
  start-page: 803
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0260
  article-title: Copper nanoparticles catalyzed oxidation of threonine by peroxomonosulfate
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2015.12.004
– volume: 72
  start-page: 229
  year: 2005
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0040
  article-title: Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties
  publication-title: J. Appl. Spectrosc.
  doi: 10.1007/s10812-005-0060-2
– volume: 125
  start-page: 13940
  year: 2003
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0100
  article-title: Completely “green” synthesis and stabilization of metal nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029267j
– volume: 200
  start-page: 616
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0205
  article-title: One pot preparation of chitosan/hyaluronic acid-based triple network hydrogel via in situ click reaction, metal coordination and polyion complexation in water
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.07.090
– volume: 44
  start-page: 278
  year: 2014
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0305
  article-title: Antimicrobial activity of the metals and metal oxide nanoparticles
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.08.031
– volume: 108
  start-page: 455
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0090
  article-title: A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.12.022
– volume: 88
  start-page: 113
  year: 2016
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0140
  article-title: CuO embedded chitosan spheres as antibacterial adsorbent for dyes
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.03.026
– volume: 202
  start-page: 246
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0115
  article-title: Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.08.124
– volume: 10
  start-page: 127
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0165
  article-title: Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13750
– volume: 689
  start-page: 162
  year: 2017
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0030
  article-title: Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.10.017
– volume: 1386
  year: 2012
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0095
  article-title: A simple and green method for synthesis of Ag and Au nanoparticles using biopolymers and sugars as reducing agent
  publication-title: MRS Proc.
  doi: 10.1557/opl.2012.645
– volume: 15
  start-page: 17
  year: 2013
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0015
  article-title: Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2012.09.002
– volume: 200
  start-page: 211
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0270
  article-title: Magnetic chitosan-(d-glucosimine methyl)benzaldehyde Schiff base for Pb+2 ion removal. Experimental and theoretical methods
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.07.081
– volume: 186
  start-page: 140
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0160
  article-title: Chitosan-based ion-imprinted cryo-composites with excellent selectivity for copper ions
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.01.033
– volume: 193
  start-page: 307
  year: 2018
  ident: 10.1016/j.ijbiomac.2019.01.145_bb0235
  article-title: Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.03.099
SSID ssj0006518
Score 2.5527802
Snippet Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 499
SubjectTerms antibiotics
antimicrobial properties
ascorbic acid
CHCu NPs
CHCuO NPs
chemical reduction
Chitosan
composite films
copper
copper nanoparticles
cupric oxide
Gram-positive bacteria
nanocomposites
sodium hydroxide
transmission electron microscopy
Title Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films
URI https://dx.doi.org/10.1016/j.ijbiomac.2019.01.145
https://www.ncbi.nlm.nih.gov/pubmed/30699337
https://www.proquest.com/docview/2179485029
https://www.proquest.com/docview/2253205833
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hOJRLxbNNochIvRp7X9nsEUWgQFVOReK22qfqKDgRCRKn_nZm_AAqQTlwsmzNyuvZ8ez32fMg5AfVUTvGZZ7EKOQiUZ7bxGzuKdAhpqWjEZOTf10NJ9fi8kberJFxnwuDYZWd7299euOtuytFp81iUVUFhiXB9gQGChwLUDLWBBVCoZWf_H0O8xjK5hsfCuco_SJLeHpSTTHJ3WIpQ6qxfCfFtKbXN6i3AGizEZ1vkc8dgsxO20luk7VY75BP475x2y5J4z_wmi5tnXm7WMSQ-Tkc7rL5QxVi0Z3Utga63EXFZfDYFujyDIBnyG6rpjgT3AOoOMLLetWIY_Q5hnjFLFWz2-UeuT4_-z2e5F07hdwDiVrl2nLLUuJBlslFhpUQaQw8sehEABQTRk4NE_fOOyUi90GDJFVJcKt8yQLfJ-v1vI5fSaZTCow5ppQFxOeY89hoU5XCaRmpKgdE9jo0vqs1ji0vZqYPKpuaXvcGdW9KCiREDkjxNG7RVtt4d4Tul8j8YzcGtoR3xx73a2pgifBPia3j_H5pGLqpkSyZ_o8Mw54amLQ2IF9ag3iaM_AwwH1cffvA7A7IJp61wZWHZH11dx-_AwBauaPGwo_IxunFz8nVI4yOB_c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NBdhr2bPT1gV8-WZMXRsQhWpGubUwv0JuiJOUidoEmB_fyRthxswLYedgock7BM0eRHmw-Az0wFZbmQeaymPq8iE7mJ3OSOYTjElbQsUHHy5WIyv66-3cibA5gNtTCUVplsf2_TO2ud_imSNItN0xSUloTuCRUUYyxEydUjOKTuVHIEhydn5_PF3iBPZPeaj-hzYvilUHj5pVlSnbuhboZMUQdPRpVNf_ZRf8OgnS86fQpPEojMTvp1PoOD0D6Ho9kwu-0FxNl3fFK3ps2c2WyCz9waf-6y9Y_GhyIdtKbFiDklxmV45wYj5hViT5_dNl1_JrwGRuOEMNtdR04J6JTlFbLYrG63L-H69OvVbJ6niQq5wzhqlysjDI9ReFlGGzg1Q2TBi8iDrTwCGT-19SQKZ52tqyCcV0jJ6lgJU7uSe_EKRu26DceQqRg955bXtUHQZ7l1NGuzLiurZGB1OQY5yFC71G6cpl6s9JBXttSD7DXJXpcM4xA5hmLPt-kbbjzIoYYt0r-pjkav8CDvp2FPNW4RfSwxbVjfbzUnSzWVJVf_oOE0VoPq1sbwuleI_ZoxFEPoJ-o3_7G6j3A0v7q80Bdni_O38JjO9LmW72C0u7sP7xEP7eyHpO8_AYhDCqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan+capped+copper+oxide%2Fcopper+nanoparticles+encapsulated+microbial+resistant+nanocomposite+films&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Jayaramudu%2C+Tippabattini&rft.au=Varaprasad%2C+Kokkarachedu&rft.au=Pyarasani%2C+Radha+D.&rft.au=Reddy%2C+K.+Koteshwara&rft.date=2019-05-01&rft.issn=0141-8130&rft.volume=128&rft.spage=499&rft.epage=508&rft_id=info:doi/10.1016%2Fj.ijbiomac.2019.01.145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2019_01_145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon