Screening Scheme Evaluation of the Assembly Process Based on the Stress-Strength Model and Defect Stream Analysis

During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the de...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 20; no. 6; p. 447
Main Authors Huang, Yubing, Dai, Wei, Liu, Lianxi, Zhao, Yu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 07.06.2018
MDPI AG
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e20060447

Cover

Loading…
Abstract During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product.
AbstractList During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product.
During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product.During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product.
Author Liu, Lianxi
Zhao, Yu
Dai, Wei
Huang, Yubing
AuthorAffiliation 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
2 Beijing Xinghang Mechanical-Electrical Equipment Co., Beijing 10091, China
AuthorAffiliation_xml – name: 2 Beijing Xinghang Mechanical-Electrical Equipment Co., Beijing 10091, China
– name: 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Author_xml – sequence: 1
  givenname: Yubing
  surname: Huang
  fullname: Huang, Yubing
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-7376-6977
  surname: Dai
  fullname: Dai, Wei
– sequence: 3
  givenname: Lianxi
  surname: Liu
  fullname: Liu, Lianxi
– sequence: 4
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33265537$$D View this record in MEDLINE/PubMed
BookMark eNpVkktv1DAQgC1URB9w4A8gH-EQ8Ct2fEFaSlsqFYG0cLYm9mQ3VWK3drbS_nuy3bJqTzOa-fSN7JlTchRTRELec_ZZSsu-oGBMM6XMK3LCmbWVkowdPcuPyWkpt4wJKbh-Q46lFLqupTkh90ufEWMfV3Tp1zgivXiAYQNTnyJNHZ3WSBel4NgOW_o7J4-l0G9QMNAZ2HWXU55r1S7E1bSmP1PAgUIM9Dt26KdHAEa6iDBsS1_ektcdDAXfPcUz8vfy4s_5j-rm19X1-eKm8orxqWpU0wDvmDfz28AwtKoLEOrgDZfYtRZaKUGbYFXbSGhrJrgXstFehI7XSp6R6703JLh1d7kfIW9dgt49FlJeOchT7wd03LRcN_NHSRbUbLIhBNM0OnCQFoSYXV_3rrtNO2LwGKcMwwvpy07s126VHpypubC6ngUfnwQ53W-wTG7si8dhgIhpU5xQWhtjRMNn9MPzWYch_3c2A5_2gM-plIzdAeHM7e7BHe5B_gMq16cY
Cites_doi 10.1080/0740817X.2014.955152
10.1016/j.ejor.2010.05.001
10.1016/j.cie.2018.03.002
10.1016/j.apt.2014.11.001
10.1109/QR2MSE.2013.6625539
10.1016/j.cja.2016.08.014
10.1002/qre.524
10.3390/s131013521
10.1016/j.microrel.2007.08.001
10.3390/e20030164
10.1016/j.procir.2017.01.035
10.1239/jap/1245676092
10.1016/j.ress.2012.10.001
10.1007/978-1-4471-5028-2
10.1239/jap/1300198148
10.1016/j.amc.2005.04.050
10.1109/EPTC.2014.7028353
10.1109/TR.2011.2170253
10.1109/IRPS.2017.7936409
10.1016/j.ress.2015.06.005
10.3390/ma11040497
10.1007/s10854-015-3263-1
10.1109/TSM.2005.852110
10.1080/0740817X.2010.491502
10.1109/TR.2002.804486
10.1016/j.ress.2012.07.004
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/e20060447
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (Roanoke)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_17b16843030d4b509ddd7886d1a39a22
PMC7512965
33265537
10_3390_e20060447
Genre Journal Article
GrantInformation_xml – fundername: The Ministry of Industry and Information Technology of China
  grantid: JSZL2014601B004; Z132014A002
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c401t-8488a1f0c7006a70e94fdad5dc713efb9ab33a67d94b83ab5021c2386c2df1543
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 14:08:33 EDT 2025
Fri Jul 11 08:31:31 EDT 2025
Mon Jul 21 06:04:01 EDT 2025
Tue Jul 01 01:57:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords screening evaluation
assembly process
entropy
defect stream
stress-strength model
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-8488a1f0c7006a70e94fdad5dc713efb9ab33a67d94b83ab5021c2386c2df1543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7376-6977
OpenAccessLink https://doaj.org/article/17b16843030d4b509ddd7886d1a39a22
PMID 33265537
PQID 2466777281
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_17b16843030d4b509ddd7886d1a39a22
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512965
proquest_miscellaneous_2466777281
pubmed_primary_33265537
crossref_primary_10_3390_e20060447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180607
PublicationDateYYYYMMDD 2018-06-07
PublicationDate_xml – month: 6
  year: 2018
  text: 20180607
  day: 7
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Wang (ref_20) 2015; 142
Hao (ref_21) 2018; 118
Wang (ref_16) 2012; 61
ref_14
Wang (ref_18) 2012; 108
Zhao (ref_7) 2015; 34
Cha (ref_22) 2009; 46
Elskamp (ref_25) 2015; 26
Kim (ref_6) 2008; 48
ref_31
Franciosa (ref_4) 2017; 60
Zhang (ref_1) 2010; 16
Navarro (ref_15) 2010; 207
Kumar (ref_27) 2006; 173
Kim (ref_2) 2005; 18
Suhir (ref_30) 2015; 26
ref_24
Cha (ref_23) 2011; 48
Jiang (ref_10) 2015; 47
ref_3
Zeng (ref_11) 2016; 29
ref_29
Peng (ref_13) 2010; 43
ref_26
Cuesta (ref_28) 2013; 13
ref_9
Wang (ref_19) 2013; 111
ref_8
Huang (ref_12) 2003; 19
Bunea (ref_17) 2002; 51
ref_5
References_xml – volume: 47
  start-page: 460
  year: 2015
  ident: ref_10
  article-title: Modeling zoned shock effects on stochastic degradation in dependent failure processes
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2014.955152
– volume: 207
  start-page: 309
  year: 2010
  ident: ref_15
  article-title: Comparisons and bounds for expected lifetimes of reliability systems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.05.001
– volume: 118
  start-page: 340
  year: 2018
  ident: ref_21
  article-title: Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels
  publication-title: Compute. Ind. Eng.
  doi: 10.1016/j.cie.2018.03.002
– volume: 26
  start-page: 679
  year: 2015
  ident: ref_25
  article-title: Review and benchmarking of process models for batch screening based on discrete element simulations
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2014.11.001
– ident: ref_9
  doi: 10.1109/QR2MSE.2013.6625539
– volume: 29
  start-page: 1294
  year: 2016
  ident: ref_11
  article-title: Using PoF models to predict system reliability considering failure collaboration
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2016.08.014
– volume: 19
  start-page: 241
  year: 2003
  ident: ref_12
  article-title: Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.524
– ident: ref_26
– volume: 13
  start-page: 13521
  year: 2013
  ident: ref_28
  article-title: Improving electronic sensor reliability by robust outlier screening
  publication-title: Sensors
  doi: 10.3390/s131013521
– volume: 48
  start-page: 481
  year: 2008
  ident: ref_6
  article-title: Reliability functions estimated from commonly used yield models
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2007.08.001
– ident: ref_3
  doi: 10.3390/e20030164
– volume: 60
  start-page: 38
  year: 2017
  ident: ref_4
  article-title: Rapid response diagnosis of multi-stage assembly process with compliant non-ideal parts using self-evolving measurement system
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2017.01.035
– volume: 46
  start-page: 353
  year: 2009
  ident: ref_22
  article-title: On a terminating shock process with independent wear increments
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1245676092
– volume: 111
  start-page: 9
  year: 2013
  ident: ref_19
  article-title: Reliability analysis of multi-trigger binary systems subject to competing failures
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.10.001
– ident: ref_14
– ident: ref_24
  doi: 10.1007/978-1-4471-5028-2
– volume: 48
  start-page: 258
  year: 2011
  ident: ref_23
  article-title: On new classes of extreme shock models and some generalizations
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1300198148
– volume: 173
  start-page: 603
  year: 2006
  ident: ref_27
  article-title: Stochastic re-entrant line modeling for an environment stress testing in a semiconductor assembly industry
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.04.050
– ident: ref_29
  doi: 10.1109/EPTC.2014.7028353
– volume: 34
  start-page: 1
  year: 2015
  ident: ref_7
  article-title: Parameter analysis of defect rate of electrical equipment based on weibull distribution
  publication-title: Hebei Electr. Power
– volume: 61
  start-page: 13
  year: 2012
  ident: ref_16
  article-title: Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2011.2170253
– ident: ref_8
– ident: ref_5
  doi: 10.1109/IRPS.2017.7936409
– volume: 142
  start-page: 388
  year: 2015
  ident: ref_20
  article-title: Combinatorial analysis of body sensor networks subject to probabilistic competing failures
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.06.005
– ident: ref_31
  doi: 10.3390/ma11040497
– volume: 26
  start-page: 6633
  year: 2015
  ident: ref_30
  article-title: Analytical bathtub curve with application to electron device reliability
  publication-title: J. Mater. Sci. Mater Electron.
  doi: 10.1007/s10854-015-3263-1
– volume: 18
  start-page: 422
  year: 2005
  ident: ref_2
  article-title: On the relationship of semiconductor yield and reliability
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2005.852110
– volume: 16
  start-page: 1844
  year: 2010
  ident: ref_1
  article-title: Producing performance analysis method for aircraft assembly unit based on Markov chain
  publication-title: Comput. Integr. Manuf.
– volume: 43
  start-page: 12
  year: 2010
  ident: ref_13
  article-title: Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2010.491502
– volume: 51
  start-page: 486
  year: 2002
  ident: ref_17
  article-title: The effect of model uncertainty on maintenance optimization
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2002.804486
– volume: 108
  start-page: 90
  year: 2012
  ident: ref_18
  article-title: Competing failure analysis in phased-mission systems with functional dependence in one of phases
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.07.004
SSID ssj0023216
Score 2.1213195
Snippet During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 447
SubjectTerms assembly process
defect stream
entropy
screening evaluation
stress-strength model
Title Screening Scheme Evaluation of the Assembly Process Based on the Stress-Strength Model and Defect Stream Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/33265537
https://www.proquest.com/docview/2466777281
https://pubmed.ncbi.nlm.nih.gov/PMC7512965
https://doaj.org/article/17b16843030d4b509ddd7886d1a39a22
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XLyI4qs-yipeg9nsZjc5Wm0tgiJWobcwyU6s0KY-2oP_3tkkLa0IXrwkkF3IZia7833s7DeMnSNBIYEoPCsi8BQAeoCh8EyupUJACqnuNPLdve4-q9t-2F8o9eVywip54MpwF8KkQkeKVlrfqpTCm7WWaJu2AmQMQbn6UsybkamaaslA6EpHSBKpv0BHnH3laqgsRJ9SpP83ZPkzQXIh4nS22GYNFfllNcRttoLFDnvvZS5ThgIO75G9R8jbc71uPs454TnuNnJH6fCL16cAeItCleXUwbX2ytMhnrsVL5MBd9XQhhwKy6_R5XaUHWDEZ3Ilu-y503666np12QQvI7I08SKakyByPzP00WB8jFVuwYY2I0KKeRpDKiVoY2OVRhLIpoHIKHLrLLA5ISq5x9aKcYEHjKPvA2QGY4i1yrWFOFe0uPsBBFnoC2yws5k5k7dKHSMhVuFsnsxt3mAtZ-h5BydoXT4gNye1m5O_3NxgpzM3JTQB3K4GFDiefiaB0toQR4hEg-1Xbpu_ShI4DUNJQzBLDl0ay3JL8TooRbaNQ0I6PPyPwR-xDcJZUZlhZo7Z2uRjiieEZSZpk61GnZsmW2-17x8em-VPTNebvvgGUz33Qg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+Scheme+Evaluation+of+the+Assembly+Process+Based+on+the+Stress-Strength+Model+and+Defect+Stream+Analysis&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Yubing&rft.au=Dai%2C+Wei&rft.au=Liu%2C+Lianxi&rft.au=Zhao%2C+Yu&rft.date=2018-06-07&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=20&rft.issue=6&rft_id=info:doi/10.3390%2Fe20060447&rft_id=info%3Apmid%2F33265537&rft.externalDocID=PMC7512965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon