Screening Scheme Evaluation of the Assembly Process Based on the Stress-Strength Model and Defect Stream Analysis
During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the de...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 20; no. 6; p. 447 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
07.06.2018
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e20060447 |
Cover
Loading…
Abstract | During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product. |
---|---|
AbstractList | During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product. During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product.During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may affect the quality of the product. Using the stress-strength model, an evaluated screening scheme method, by analyzing the variation of the defect density in the assembly process, is proposed and discussed. The influence of screening stress on product defects is considered to determine the screening scheme. We performed the defect stream analysis by calculating the recursive relations of residual defect density under multi-stress conditions. We find that the probability density function, which shows the defect changing process from latent to dominant relative to the time process, agrees very well with the historical data. We also calculate the risk as the entropy of the assembly task. Finally, we verify our method by analyzing the assembly process of a certain product. |
Author | Liu, Lianxi Zhao, Yu Dai, Wei Huang, Yubing |
AuthorAffiliation | 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China 2 Beijing Xinghang Mechanical-Electrical Equipment Co., Beijing 10091, China |
AuthorAffiliation_xml | – name: 2 Beijing Xinghang Mechanical-Electrical Equipment Co., Beijing 10091, China – name: 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China |
Author_xml | – sequence: 1 givenname: Yubing surname: Huang fullname: Huang, Yubing – sequence: 2 givenname: Wei orcidid: 0000-0002-7376-6977 surname: Dai fullname: Dai, Wei – sequence: 3 givenname: Lianxi surname: Liu fullname: Liu, Lianxi – sequence: 4 givenname: Yu surname: Zhao fullname: Zhao, Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33265537$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkktv1DAQgC1URB9w4A8gH-EQ8Ct2fEFaSlsqFYG0cLYm9mQ3VWK3drbS_nuy3bJqTzOa-fSN7JlTchRTRELec_ZZSsu-oGBMM6XMK3LCmbWVkowdPcuPyWkpt4wJKbh-Q46lFLqupTkh90ufEWMfV3Tp1zgivXiAYQNTnyJNHZ3WSBel4NgOW_o7J4-l0G9QMNAZ2HWXU55r1S7E1bSmP1PAgUIM9Dt26KdHAEa6iDBsS1_ektcdDAXfPcUz8vfy4s_5j-rm19X1-eKm8orxqWpU0wDvmDfz28AwtKoLEOrgDZfYtRZaKUGbYFXbSGhrJrgXstFehI7XSp6R6703JLh1d7kfIW9dgt49FlJeOchT7wd03LRcN_NHSRbUbLIhBNM0OnCQFoSYXV_3rrtNO2LwGKcMwwvpy07s126VHpypubC6ngUfnwQ53W-wTG7si8dhgIhpU5xQWhtjRMNn9MPzWYch_3c2A5_2gM-plIzdAeHM7e7BHe5B_gMq16cY |
Cites_doi | 10.1080/0740817X.2014.955152 10.1016/j.ejor.2010.05.001 10.1016/j.cie.2018.03.002 10.1016/j.apt.2014.11.001 10.1109/QR2MSE.2013.6625539 10.1016/j.cja.2016.08.014 10.1002/qre.524 10.3390/s131013521 10.1016/j.microrel.2007.08.001 10.3390/e20030164 10.1016/j.procir.2017.01.035 10.1239/jap/1245676092 10.1016/j.ress.2012.10.001 10.1007/978-1-4471-5028-2 10.1239/jap/1300198148 10.1016/j.amc.2005.04.050 10.1109/EPTC.2014.7028353 10.1109/TR.2011.2170253 10.1109/IRPS.2017.7936409 10.1016/j.ress.2015.06.005 10.3390/ma11040497 10.1007/s10854-015-3263-1 10.1109/TSM.2005.852110 10.1080/0740817X.2010.491502 10.1109/TR.2002.804486 10.1016/j.ress.2012.07.004 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/e20060447 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (Roanoke) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_17b16843030d4b509ddd7886d1a39a22 PMC7512965 33265537 10_3390_e20060447 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The Ministry of Industry and Information Technology of China grantid: JSZL2014601B004; Z132014A002 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c401t-8488a1f0c7006a70e94fdad5dc713efb9ab33a67d94b83ab5021c2386c2df1543 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 14:08:33 EDT 2025 Fri Jul 11 08:31:31 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Tue Jul 01 01:57:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | screening evaluation assembly process entropy defect stream stress-strength model |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-8488a1f0c7006a70e94fdad5dc713efb9ab33a67d94b83ab5021c2386c2df1543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7376-6977 |
OpenAccessLink | https://doaj.org/article/17b16843030d4b509ddd7886d1a39a22 |
PMID | 33265537 |
PQID | 2466777281 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17b16843030d4b509ddd7886d1a39a22 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512965 proquest_miscellaneous_2466777281 pubmed_primary_33265537 crossref_primary_10_3390_e20060447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180607 |
PublicationDateYYYYMMDD | 2018-06-07 |
PublicationDate_xml | – month: 6 year: 2018 text: 20180607 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2018 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Wang (ref_20) 2015; 142 Hao (ref_21) 2018; 118 Wang (ref_16) 2012; 61 ref_14 Wang (ref_18) 2012; 108 Zhao (ref_7) 2015; 34 Cha (ref_22) 2009; 46 Elskamp (ref_25) 2015; 26 Kim (ref_6) 2008; 48 ref_31 Franciosa (ref_4) 2017; 60 Zhang (ref_1) 2010; 16 Navarro (ref_15) 2010; 207 Kumar (ref_27) 2006; 173 Kim (ref_2) 2005; 18 Suhir (ref_30) 2015; 26 ref_24 Cha (ref_23) 2011; 48 Jiang (ref_10) 2015; 47 ref_3 Zeng (ref_11) 2016; 29 ref_29 Peng (ref_13) 2010; 43 ref_26 Cuesta (ref_28) 2013; 13 ref_9 Wang (ref_19) 2013; 111 ref_8 Huang (ref_12) 2003; 19 Bunea (ref_17) 2002; 51 ref_5 |
References_xml | – volume: 47 start-page: 460 year: 2015 ident: ref_10 article-title: Modeling zoned shock effects on stochastic degradation in dependent failure processes publication-title: IIE Trans. doi: 10.1080/0740817X.2014.955152 – volume: 207 start-page: 309 year: 2010 ident: ref_15 article-title: Comparisons and bounds for expected lifetimes of reliability systems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.05.001 – volume: 118 start-page: 340 year: 2018 ident: ref_21 article-title: Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels publication-title: Compute. Ind. Eng. doi: 10.1016/j.cie.2018.03.002 – volume: 26 start-page: 679 year: 2015 ident: ref_25 article-title: Review and benchmarking of process models for batch screening based on discrete element simulations publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2014.11.001 – ident: ref_9 doi: 10.1109/QR2MSE.2013.6625539 – volume: 29 start-page: 1294 year: 2016 ident: ref_11 article-title: Using PoF models to predict system reliability considering failure collaboration publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2016.08.014 – volume: 19 start-page: 241 year: 2003 ident: ref_12 article-title: Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.524 – ident: ref_26 – volume: 13 start-page: 13521 year: 2013 ident: ref_28 article-title: Improving electronic sensor reliability by robust outlier screening publication-title: Sensors doi: 10.3390/s131013521 – volume: 48 start-page: 481 year: 2008 ident: ref_6 article-title: Reliability functions estimated from commonly used yield models publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2007.08.001 – ident: ref_3 doi: 10.3390/e20030164 – volume: 60 start-page: 38 year: 2017 ident: ref_4 article-title: Rapid response diagnosis of multi-stage assembly process with compliant non-ideal parts using self-evolving measurement system publication-title: Proc. CIRP doi: 10.1016/j.procir.2017.01.035 – volume: 46 start-page: 353 year: 2009 ident: ref_22 article-title: On a terminating shock process with independent wear increments publication-title: J. Appl. Probab. doi: 10.1239/jap/1245676092 – volume: 111 start-page: 9 year: 2013 ident: ref_19 article-title: Reliability analysis of multi-trigger binary systems subject to competing failures publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.10.001 – ident: ref_14 – ident: ref_24 doi: 10.1007/978-1-4471-5028-2 – volume: 48 start-page: 258 year: 2011 ident: ref_23 article-title: On new classes of extreme shock models and some generalizations publication-title: J. Appl. Probab. doi: 10.1239/jap/1300198148 – volume: 173 start-page: 603 year: 2006 ident: ref_27 article-title: Stochastic re-entrant line modeling for an environment stress testing in a semiconductor assembly industry publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.04.050 – ident: ref_29 doi: 10.1109/EPTC.2014.7028353 – volume: 34 start-page: 1 year: 2015 ident: ref_7 article-title: Parameter analysis of defect rate of electrical equipment based on weibull distribution publication-title: Hebei Electr. Power – volume: 61 start-page: 13 year: 2012 ident: ref_16 article-title: Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2011.2170253 – ident: ref_8 – ident: ref_5 doi: 10.1109/IRPS.2017.7936409 – volume: 142 start-page: 388 year: 2015 ident: ref_20 article-title: Combinatorial analysis of body sensor networks subject to probabilistic competing failures publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.06.005 – ident: ref_31 doi: 10.3390/ma11040497 – volume: 26 start-page: 6633 year: 2015 ident: ref_30 article-title: Analytical bathtub curve with application to electron device reliability publication-title: J. Mater. Sci. Mater Electron. doi: 10.1007/s10854-015-3263-1 – volume: 18 start-page: 422 year: 2005 ident: ref_2 article-title: On the relationship of semiconductor yield and reliability publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2005.852110 – volume: 16 start-page: 1844 year: 2010 ident: ref_1 article-title: Producing performance analysis method for aircraft assembly unit based on Markov chain publication-title: Comput. Integr. Manuf. – volume: 43 start-page: 12 year: 2010 ident: ref_13 article-title: Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes publication-title: IIE Trans. doi: 10.1080/0740817X.2010.491502 – volume: 51 start-page: 486 year: 2002 ident: ref_17 article-title: The effect of model uncertainty on maintenance optimization publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2002.804486 – volume: 108 start-page: 90 year: 2012 ident: ref_18 article-title: Competing failure analysis in phased-mission systems with functional dependence in one of phases publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.07.004 |
SSID | ssj0023216 |
Score | 2.1213195 |
Snippet | During the assembly process, there are inevitable variations and noise factors in the material properties, process parameters and screening scheme, which may... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 447 |
SubjectTerms | assembly process defect stream entropy screening evaluation stress-strength model |
Title | Screening Scheme Evaluation of the Assembly Process Based on the Stress-Strength Model and Defect Stream Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33265537 https://www.proquest.com/docview/2466777281 https://pubmed.ncbi.nlm.nih.gov/PMC7512965 https://doaj.org/article/17b16843030d4b509ddd7886d1a39a22 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XLyI4qs-yipeg9nsZjc5Wm0tgiJWobcwyU6s0KY-2oP_3tkkLa0IXrwkkF3IZia7833s7DeMnSNBIYEoPCsi8BQAeoCh8EyupUJACqnuNPLdve4-q9t-2F8o9eVywip54MpwF8KkQkeKVlrfqpTCm7WWaJu2AmQMQbn6UsybkamaaslA6EpHSBKpv0BHnH3laqgsRJ9SpP83ZPkzQXIh4nS22GYNFfllNcRttoLFDnvvZS5ThgIO75G9R8jbc71uPs454TnuNnJH6fCL16cAeItCleXUwbX2ytMhnrsVL5MBd9XQhhwKy6_R5XaUHWDEZ3Ilu-y503666np12QQvI7I08SKakyByPzP00WB8jFVuwYY2I0KKeRpDKiVoY2OVRhLIpoHIKHLrLLA5ISq5x9aKcYEHjKPvA2QGY4i1yrWFOFe0uPsBBFnoC2yws5k5k7dKHSMhVuFsnsxt3mAtZ-h5BydoXT4gNye1m5O_3NxgpzM3JTQB3K4GFDiefiaB0toQR4hEg-1Xbpu_ShI4DUNJQzBLDl0ay3JL8TooRbaNQ0I6PPyPwR-xDcJZUZlhZo7Z2uRjiieEZSZpk61GnZsmW2-17x8em-VPTNebvvgGUz33Qg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+Scheme+Evaluation+of+the+Assembly+Process+Based+on+the+Stress-Strength+Model+and+Defect+Stream+Analysis&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Yubing&rft.au=Dai%2C+Wei&rft.au=Liu%2C+Lianxi&rft.au=Zhao%2C+Yu&rft.date=2018-06-07&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=20&rft.issue=6&rft_id=info:doi/10.3390%2Fe20060447&rft_id=info%3Apmid%2F33265537&rft.externalDocID=PMC7512965 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |