Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant
[Display omitted] •A novel HN-AD Acinetobacter sp. was isolated with excellent nitrogen removal capability.•It tolerated high inorganic nitrogen (100 mg/L) and exhibited rapid removal rate.•It could effectually remove NH4+ in simultaneous nitrification and denitrification.•Proposed metabolic pathway...
Saved in:
Published in | Bioresource technology Vol. 347; p. 126423 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2021.126423 |
Cover
Loading…
Abstract | [Display omitted]
•A novel HN-AD Acinetobacter sp. was isolated with excellent nitrogen removal capability.•It tolerated high inorganic nitrogen (100 mg/L) and exhibited rapid removal rate.•It could effectually remove NH4+ in simultaneous nitrification and denitrification.•Proposed metabolic pathway of HN-AD was predicted after enzyme identification.
The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment. |
---|---|
AbstractList | The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment. The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment. The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment.The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment. [Display omitted] •A novel HN-AD Acinetobacter sp. was isolated with excellent nitrogen removal capability.•It tolerated high inorganic nitrogen (100 mg/L) and exhibited rapid removal rate.•It could effectually remove NH4+ in simultaneous nitrification and denitrification.•Proposed metabolic pathway of HN-AD was predicted after enzyme identification. The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment. |
ArticleNumber | 126423 |
Author | Guo, Ting-Ting Xue, Ya-Ping Pan, Li Tang, Su-Qin Zheng, Yu-Guo Ke, Xia Liu, Cong |
Author_xml | – sequence: 1 givenname: Xia surname: Ke fullname: Ke, Xia organization: Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China – sequence: 2 givenname: Cong surname: Liu fullname: Liu, Cong organization: Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China – sequence: 3 givenname: Su-Qin surname: Tang fullname: Tang, Su-Qin organization: Hangzhou Environmental Group Company Limited, Hangzhou 310022, PR China – sequence: 4 givenname: Ting-Ting surname: Guo fullname: Guo, Ting-Ting organization: Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China – sequence: 5 givenname: Li surname: Pan fullname: Pan, Li organization: Hangzhou Environmental Group Company Limited, Hangzhou 310022, PR China – sequence: 6 givenname: Ya-Ping surname: Xue fullname: Xue, Ya-Ping email: xyp@zjut.edu.cn organization: Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China – sequence: 7 givenname: Yu-Guo surname: Zheng fullname: Zheng, Yu-Guo organization: Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34838964$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2OFCEUhYkZ4_SMvsKEpZtugaKASlw4dvzNJG5044ZQcMumUwUtUGP0WXxY6anphW7GDSSc79xLzrlAZyEGQOiKkg0lVLzYb3ofUwG72zDC6IYywVnzCK2oks2adVKcoRXpBFmrlvFzdJHznhDSUMmeoPOGq0Z1gq_Q7-3OJGMLJP_LFB8DjgO-tj5Aif3dO_bBeTtn_PXja0Yo6_AQE95BlWJJ8bDzFgdfkh-8XSaY4LCpal8VB39rPsfRFHB4SHGqJJ5TX88MP8w3wCWBKROEgg-jCeUpejyYMcOz-_sSfXn75vP2_frm07sP2-ubteWElrWiVHbSWEEHcJazVjnGAaRrO6natpcwECmcVc4oyaEfWNsNvQBbk2zB8eYSPV_mHlL8PkMuevLZwlj_AHHOmolGcErbTv0HSjhvhZJH9OoenfsJnD4kP5n0U5_Cr8DLBbAp5pxg0NaXu5hKMn7UlOhj13qvT13rY9d66braxT_204YHja8WI9RMbz0kna2HYMH5BLZoF_1DI_4AaSzKjw |
CitedBy_id | crossref_primary_10_3390_plants13050613 crossref_primary_10_1016_j_biortech_2022_127353 crossref_primary_10_1016_j_biortech_2024_130801 crossref_primary_10_1016_j_eti_2024_103858 crossref_primary_10_1016_j_watres_2024_121532 crossref_primary_10_1016_j_biortech_2022_127792 crossref_primary_10_1016_j_jwpe_2024_105281 crossref_primary_10_3390_microorganisms12122652 crossref_primary_10_1016_j_jwpe_2022_103267 crossref_primary_10_1016_j_jwpe_2024_105647 crossref_primary_10_1016_j_jece_2023_109682 crossref_primary_10_1016_j_jenvman_2025_124405 crossref_primary_10_3390_microorganisms13030687 crossref_primary_10_1016_j_scitotenv_2023_163859 crossref_primary_10_1016_j_biortech_2023_129812 crossref_primary_10_1016_j_biortech_2022_127756 crossref_primary_10_3390_w16030431 crossref_primary_10_1007_s10499_023_01224_2 crossref_primary_10_1016_j_jece_2023_111519 crossref_primary_10_1016_j_jece_2024_114190 crossref_primary_10_1016_j_biortech_2024_131621 crossref_primary_10_1016_j_envres_2023_117674 crossref_primary_10_1016_j_envres_2022_115199 crossref_primary_10_3390_microorganisms11061532 crossref_primary_10_1016_j_chemosphere_2024_142525 crossref_primary_10_1016_j_envres_2023_116062 crossref_primary_10_1016_j_jwpe_2023_103532 crossref_primary_10_1016_j_scitotenv_2023_168348 crossref_primary_10_1016_j_biortech_2022_128236 crossref_primary_10_1016_j_biortech_2023_129309 crossref_primary_10_1111_raq_12912 crossref_primary_10_1016_j_envres_2023_117595 crossref_primary_10_1016_j_bej_2024_109417 crossref_primary_10_3389_fpls_2023_1184489 crossref_primary_10_1016_j_jenvman_2022_116506 crossref_primary_10_1016_j_jwpe_2025_107206 crossref_primary_10_1016_j_dwt_2024_100227 crossref_primary_10_1016_j_ijbiomac_2024_130402 crossref_primary_10_1021_acsestwater_3c00789 crossref_primary_10_3390_w16131799 crossref_primary_10_3390_w16030416 crossref_primary_10_1016_j_jhazmat_2025_137354 crossref_primary_10_1016_j_jwpe_2023_104138 crossref_primary_10_1016_j_envres_2023_116591 crossref_primary_10_1016_j_biortech_2023_128822 crossref_primary_10_1007_s00449_023_02854_9 crossref_primary_10_1016_j_cej_2025_159535 crossref_primary_10_3390_w14101597 crossref_primary_10_1016_j_biortech_2023_128994 crossref_primary_10_1016_j_biteb_2023_101495 crossref_primary_10_1016_j_biortech_2023_129285 crossref_primary_10_1016_j_jwpe_2024_105954 crossref_primary_10_1016_j_ecoenv_2024_116588 crossref_primary_10_1016_j_bej_2022_108759 crossref_primary_10_1016_j_biortech_2023_128995 crossref_primary_10_1111_1462_2920_70080 crossref_primary_10_1016_j_biortech_2022_127645 crossref_primary_10_1016_j_eti_2024_103694 crossref_primary_10_1007_s00203_024_04183_1 crossref_primary_10_1016_j_scitotenv_2022_157452 crossref_primary_10_3390_w15162990 crossref_primary_10_1016_j_desal_2024_118009 crossref_primary_10_1021_acs_estlett_4c00936 crossref_primary_10_2166_wst_2024_176 crossref_primary_10_3389_fmicb_2024_1425548 crossref_primary_10_1016_j_jenvman_2024_123890 crossref_primary_10_1016_j_biortech_2024_130322 crossref_primary_10_1093_jambio_lxad145 crossref_primary_10_1016_j_chemosphere_2023_138266 |
Cites_doi | 10.1016/j.biortech.2020.123888 10.1007/BF02386224 10.1016/j.biortech.2014.06.001 10.1016/j.biortech.2019.121360 10.3390/ijms16048008 10.1016/j.biortech.2020.123922 10.1016/j.biortech.2020.124198 10.1016/j.biortech.2019.121506 10.1007/s12010-014-1406-0 10.1016/j.jes.2020.06.007 10.1111/jam.14476 10.1016/j.biortech.2018.10.052 10.1016/j.biortech.2020.122799 10.1016/j.biortech.2017.04.125 10.1016/j.jbiosc.2018.07.025 10.1016/j.jbiosc.2017.06.008 10.1016/j.biortech.2015.05.075 10.1016/j.biortech.2020.122749 10.1038/nature14180 10.1016/j.scitotenv.2021.149319 10.1016/j.biortech.2021.125189 10.1016/j.biortech.2017.07.186 10.1016/j.biortech.2011.04.101 10.1007/s00449-020-02451-0 10.1007/s12257-015-0009-0 10.1016/j.biortech.2016.07.110 10.1016/j.jbiosc.2013.11.018 10.1016/j.syapm.2011.02.003 10.1016/j.biortech.2014.12.057 10.1016/j.biortech.2013.03.189 10.1016/j.biortech.2020.123309 10.1016/j.biortech.2018.03.123 10.1016/j.biortech.2012.02.050 10.1016/j.scitotenv.2019.135181 10.1002/jctb.5863 10.1016/j.biortech.2015.10.064 10.1016/j.cej.2018.08.032 10.1007/s00203-002-0477-4 10.1016/j.jbiosc.2011.12.012 10.1016/j.biombioe.2020.105677 10.1099/mic.0.000047 10.1016/j.scitotenv.2021.146521 10.1016/j.ibiod.2013.01.001 10.1016/j.biortech.2018.10.060 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2021.126423 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 34838964 10_1016_j_biortech_2021_126423 S096085242101765X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c401t-811797ac61fedc4258d24ee7d597855b7ef076dc8da874ebf259fb6ec1015ed43 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 06:30:48 EDT 2025 Mon Jul 21 09:40:47 EDT 2025 Wed Feb 19 02:26:59 EST 2025 Thu Apr 24 23:12:42 EDT 2025 Tue Jul 01 03:19:00 EDT 2025 Fri Feb 23 02:40:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterotrophic nitrification Biological treatment Aerobic denitrification Nitrogen removal functional enzyme |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-811797ac61fedc4258d24ee7d597855b7ef076dc8da874ebf259fb6ec1015ed43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34838964 |
PQID | 2604456878 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636411598 proquest_miscellaneous_2604456878 pubmed_primary_34838964 crossref_citationtrail_10_1016_j_biortech_2021_126423 crossref_primary_10_1016_j_biortech_2021_126423 elsevier_sciencedirect_doi_10_1016_j_biortech_2021_126423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-Mar 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cui, Cui, Huang (b0030) 2021; 333 Ouyang, Wang, Liu, Wong, Hu, Chen, Yang, Li (b0100) 2020; 315 Huang, Zhou, Zhang, Zhou, Guo, Di, Zhou (b0065) 2015; 16 Zhang, Chen, Lyu, Wang (b0240) 2019; 94 Padhi, Tripathy, Sen, Mahapatra, Mohanty, Maiti (b0105) 2013; 78 Wang, Zou, Chen, Lv (b0185) 2021; 44 Li, Zhang, Huang, Ma, Miao, Shi, Xu, Liu, Huang (b0090) 2020; 316 Feng, Yang, Ma, Pi, Xing, Li (b0040) 2020; 717 Zhao, Cui, Wang, Lindley (b0245) 2018; 213 Yang, Wang, Chen, Lyu (b0200) 2019; 274 Ruan, Yin, Cui, Li, Shen (b0125) 2020; 98 Zeng, Huang, Hua, Champagne (b0230) 2020; 310 Robertson, Kuenen (b0115) 1984; 50 Rout, Bhunia, Dash (b0120) 2017; 244 Su, Zhang, Huang, Wen, Guo, Yang (b0150) 2015; 161 Sun, Lv, Liu, Ren (b0155) 2016; 220 Lang, Li, Ji, Yan, Guo (b0080) 2020; 302 Duan, Fang, Su, Chen, Lin (b0035) 2015; 179 Verbaendert, Boon, De Vos, Heylen (b0160) 2011; 34 Xie, Thiri, Wang (b0195) 2021; 319 Nbsc (b0095) 2020 Stueken, Buick, Guy, Koehler (b0145) 2015; 520 Wang, Chen, Feng, Deng (b0175) 2021; 780 Huang, Pan, Lv, Tang (b0060) 2017; 124 Hommes, Sayavedra-Soto, Arp (b0055) 2002; 178 He, Li, Sun, Xu, Ye (b0050) 2016; 200 Wang, Wang, Zhang, Sun, Zhang, Chen, Li (b0180) 2019; 288 Lei, Jia, Chen, Hu (b0085) 2019; 272 Zhang, Zhao, Chen, Kang, Wang, Feng, Jia, Yan, Wang, Xu (b0235) 2018; 260 Xia, Li, Fan, Wang (b0190) 2020; 301 Chen, Ni (b0020) 2012; 113 Yang, Feng, Pi, Cui, Ma, Zhao, Li (b0205) 2020 Yao, Ni, Ma, Li (b0225) 2013; 139 Jin, Liu, Liu, Zhou, Huang, Wang (b0075) 2015; 175 Yang, Xin, Zhang, Gu, Li, Ding, Shi (b0220) 2020; 140 He, Xie, Li, Ni, Sun (b0045) 2017; 239 Rajta, Bhatia, Setia, Pathania (b0110) 2020; 128 Wan, Wang (b0170) 2021 Chen, Li, Li, Wang, Li, Ren, Wang (b0015) 2012; 116 Apha (b0005) 1998 Yang, Wang, Cui, Ren, Yu, Chen, Xiao, Guo, Wang (b0215) 2019; 285 Chen, Wang, Feng, Zhu, Zhou, Tan, Li (b0010) 2014; 167 Shoda, Ishikawa (b0135) 2014; 117 Wan, Yang, Lee, Du, Wan, Chen (b0165) 2011; 102 Chen, He, Wu, Du (b0025) 2019; 127 Ji, Yang, Zhu, Jiang, Wang, Zhou, Zhang (b0070) 2015; 20 Shao, Hu, Cheng, Chen (b0130) 2018; 354 Song, Zhang, Li, Wu, Feng, Dong (b0140) 2021; 801 Yang, Ren, Liang, Zhao, Wang, Xia (b0210) 2015; 193 Wan (10.1016/j.biortech.2021.126423_b0165) 2011; 102 Wang (10.1016/j.biortech.2021.126423_b0175) 2021; 780 Chen (10.1016/j.biortech.2021.126423_b0015) 2012; 116 Li (10.1016/j.biortech.2021.126423_b0090) 2020; 316 Cui (10.1016/j.biortech.2021.126423_b0030) 2021; 333 Lang (10.1016/j.biortech.2021.126423_b0080) 2020; 302 Yang (10.1016/j.biortech.2021.126423_b0200) 2019; 274 Yang (10.1016/j.biortech.2021.126423_b0215) 2019; 285 Apha (10.1016/j.biortech.2021.126423_b0005) 1998 Chen (10.1016/j.biortech.2021.126423_b0010) 2014; 167 Chen (10.1016/j.biortech.2021.126423_b0025) 2019; 127 Chen (10.1016/j.biortech.2021.126423_b0020) 2012; 113 Rout (10.1016/j.biortech.2021.126423_b0120) 2017; 244 Wan (10.1016/j.biortech.2021.126423_b0170) 2021 Zhang (10.1016/j.biortech.2021.126423_b0240) 2019; 94 Shao (10.1016/j.biortech.2021.126423_b0130) 2018; 354 Feng (10.1016/j.biortech.2021.126423_b0040) 2020; 717 Robertson (10.1016/j.biortech.2021.126423_b0115) 1984; 50 Xie (10.1016/j.biortech.2021.126423_b0195) 2021; 319 Zeng (10.1016/j.biortech.2021.126423_b0230) 2020; 310 Wang (10.1016/j.biortech.2021.126423_b0180) 2019; 288 Stueken (10.1016/j.biortech.2021.126423_b0145) 2015; 520 Xia (10.1016/j.biortech.2021.126423_b0190) 2020; 301 Verbaendert (10.1016/j.biortech.2021.126423_b0160) 2011; 34 Duan (10.1016/j.biortech.2021.126423_b0035) 2015; 179 Ji (10.1016/j.biortech.2021.126423_b0070) 2015; 20 Padhi (10.1016/j.biortech.2021.126423_b0105) 2013; 78 Song (10.1016/j.biortech.2021.126423_b0140) 2021; 801 Yang (10.1016/j.biortech.2021.126423_b0205) 2020 Wang (10.1016/j.biortech.2021.126423_b0185) 2021; 44 Zhang (10.1016/j.biortech.2021.126423_b0235) 2018; 260 Zhao (10.1016/j.biortech.2021.126423_b0245) 2018; 213 He (10.1016/j.biortech.2021.126423_b0050) 2016; 200 Yang (10.1016/j.biortech.2021.126423_b0210) 2015; 193 Hommes (10.1016/j.biortech.2021.126423_b0055) 2002; 178 Shoda (10.1016/j.biortech.2021.126423_b0135) 2014; 117 Su (10.1016/j.biortech.2021.126423_b0150) 2015; 161 Huang (10.1016/j.biortech.2021.126423_b0065) 2015; 16 Jin (10.1016/j.biortech.2021.126423_b0075) 2015; 175 Ouyang (10.1016/j.biortech.2021.126423_b0100) 2020; 315 Rajta (10.1016/j.biortech.2021.126423_b0110) 2020; 128 Lei (10.1016/j.biortech.2021.126423_b0085) 2019; 272 Nbsc (10.1016/j.biortech.2021.126423_b0095) 2020 He (10.1016/j.biortech.2021.126423_b0045) 2017; 239 Ruan (10.1016/j.biortech.2021.126423_b0125) 2020; 98 Yang (10.1016/j.biortech.2021.126423_b0220) 2020; 140 Huang (10.1016/j.biortech.2021.126423_b0060) 2017; 124 Sun (10.1016/j.biortech.2021.126423_b0155) 2016; 220 Yao (10.1016/j.biortech.2021.126423_b0225) 2013; 139 |
References_xml | – volume: 116 start-page: 266 year: 2012 end-page: 270 ident: b0015 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium publication-title: Bioresour. Technol. – volume: 301 year: 2020 ident: b0190 article-title: Heterotrophic nitrification and aerobic denitrification by a novel publication-title: Bioresour. Technol. – volume: 315 start-page: 123888 year: 2020 ident: b0100 article-title: A study on the nitrogen removal efficacy of bacterium publication-title: Bioresource Technology – volume: 124 start-page: 564 year: 2017 end-page: 571 ident: b0060 article-title: Characterization of novel publication-title: J. Biosci. Bioeng. – volume: 117 start-page: 737 year: 2014 end-page: 741 ident: b0135 article-title: Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by publication-title: Journal of Bioscience and Bioengineering – volume: 44 start-page: 391 year: 2021 end-page: 401 ident: b0185 article-title: Nitrate removal performances of a new aerobic denitrifier, publication-title: Bioprocess. Biosyst. Eng. – start-page: 731 year: 2020 ident: b0205 article-title: A critical review of aerobic denitrification: Insights into the intracellular electron transfer – volume: 193 start-page: 227 year: 2015 end-page: 233 ident: b0210 article-title: Nitrogen removal characteristics of a heterotrophic nitrifier publication-title: Bioresour. Technol. – volume: 127 start-page: 201 year: 2019 end-page: 205 ident: b0025 article-title: Characteristics of heterotrophic nitrification and aerobic denitrification bacterium publication-title: J. Biosci. Bioeng. – volume: 333 start-page: 125189 year: 2021 ident: b0030 article-title: A novel halophilic publication-title: Bioresour. Technol. – volume: 20 start-page: 643 year: 2015 end-page: 651 ident: b0070 article-title: Aerobic denitrification: a review of important advances of the last 30 years publication-title: Biotechnol. Bioproc. E. – volume: 16 start-page: 8008 year: 2015 end-page: 8026 ident: b0065 article-title: Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers publication-title: Int. J. Mol. Sci. – volume: 50 start-page: 525 year: 1984 end-page: 544 ident: b0115 article-title: Aerobic denitrification–old wine in new bottles? publication-title: Antonie van Leeuwenhoek. – volume: 113 start-page: 619 year: 2012 end-page: 623 ident: b0020 article-title: Ammonium removal by publication-title: J. Biosci. Bioeng. – volume: 310 year: 2020 ident: b0230 article-title: Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances publication-title: Bioresour Technol. – volume: 316 start-page: 123922 year: 2020 ident: b0090 article-title: Aerobic denitrifying bacterial communities drive nitrate removal: Performance, metabolic activity, dynamics and interactions of core species publication-title: Bioresour Technol. – volume: 244 start-page: 484 year: 2017 end-page: 495 ident: b0120 article-title: Simultaneous removal of nitrogen and phosphorous from domestic wastewater using publication-title: Bioresour. Technol. – volume: 94 start-page: 1165 year: 2019 end-page: 1175 ident: b0240 article-title: Nitrogen removal by a metal-resistant bacterium, publication-title: J. Chem. Technol. Biotech. – volume: 178 start-page: 471 year: 2002 end-page: 476 ident: b0055 article-title: The roles of the three gene copies encoding hydroxylamine oxidoreductase in publication-title: Arch. Microbiol. – volume: 34 start-page: 385 year: 2011 end-page: 391 ident: b0160 article-title: Denitrification is a common feature among members of the genus publication-title: Syst Appl Microbiol. – volume: 98 start-page: 179 year: 2020 end-page: 185 ident: b0125 article-title: Bioaugmentation and quorum sensing disruption as solutions to increase nitrate removal in sequencing batch reactors treating nitrate-rich wastewater publication-title: J. Environ. Sci. – volume: 272 start-page: 442 year: 2019 end-page: 450 ident: b0085 article-title: Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated publication-title: Bioresour. Technol. – volume: 780 year: 2021 ident: b0175 article-title: Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources publication-title: Sci. Total Environ. – volume: 179 start-page: 421 year: 2015 end-page: 428 ident: b0035 article-title: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. – volume: 175 start-page: 2000 year: 2015 end-page: 2011 ident: b0075 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium publication-title: Appl. Biochem. Biotechnol. – volume: 161 start-page: 829 year: 2015 end-page: 837 ident: b0150 article-title: Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, publication-title: Microbiol-Sgm. – year: 2020 ident: b0095 article-title: China Statistical Year Book 2020 – volume: 354 start-page: 758 year: 2018 end-page: 766 ident: b0130 article-title: Degradation of oxytetracycline (OTC) and nitrogen conversion characteristics using a novel strain publication-title: Chem. Eng. J. – volume: 200 start-page: 493 year: 2016 end-page: 499 ident: b0050 article-title: Heterotrophic nitrification and aerobic denitrification by publication-title: Bioresour. Technol. – start-page: 22 year: 2021 ident: b0170 article-title: Control of urban river water pollution is studied based on SMS – volume: 128 start-page: 1261 year: 2020 end-page: 1278 ident: b0110 article-title: Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater publication-title: J. Appl. Microbiol. – volume: 220 start-page: 142 year: 2016 end-page: 150 ident: b0155 article-title: Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium publication-title: Bioresour. Technol. – volume: 140 year: 2020 ident: b0220 article-title: Characterization on the aerobic denitrification process of publication-title: Biomass Bioenergy. – volume: 239 start-page: 66 year: 2017 end-page: 73 ident: b0045 article-title: Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by publication-title: Bioresour. Technol. – volume: 801 start-page: 149319 year: 2021 ident: b0140 article-title: A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs) publication-title: Sci Total Environ. – volume: 285 year: 2019 ident: b0215 article-title: Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium publication-title: Bioresour. Technol. – volume: 274 start-page: 56 year: 2019 end-page: 64 ident: b0200 article-title: Ammonium removal characteristics of an acid-resistant bacterium publication-title: Bioresour. Technol. – volume: 78 start-page: 67 year: 2013 end-page: 73 ident: b0105 article-title: Characterisation of heterotrophic nitrifying and aerobic denitrifying publication-title: Int. Biodeter. Biodegr. – volume: 302 start-page: 122799 year: 2020 ident: b0080 article-title: Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, publication-title: Bioresour. Technol. – volume: 102 start-page: 7244 year: 2011 end-page: 7248 ident: b0165 article-title: Aerobic denitrification by novel isolated strain using NO-(2)-N as nitrogen source publication-title: Bioresour. Technol. – year: 1998 ident: b0005 article-title: Standard methods for the examination of water and wastewater, twentieth – volume: 288 year: 2019 ident: b0180 article-title: Simultaneous nitrification and denitrification by a novel isolated publication-title: Bioresour. Technol. – volume: 717 start-page: 135181 year: 2020 ident: b0040 article-title: Characterisation of publication-title: Sci. Total Environ. – volume: 167 start-page: 456 year: 2014 end-page: 461 ident: b0010 article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium publication-title: Bioresour. Technol. – volume: 319 year: 2021 ident: b0195 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by a novel isolated publication-title: Bioresour Technol. – volume: 213 start-page: 247 year: 2018 end-page: 254 ident: b0245 article-title: Customizing the coefficients of urban domestic pollutant discharge and their driving mechanisms: Evidence from the Taihu Basin publication-title: China. J. Environ. Manag. – volume: 260 start-page: 321 year: 2018 end-page: 328 ident: b0235 article-title: KS293 adaptation to aerobic and anaerobic denitrification: Insights from nitrogen removal, functional gene abundance, and proteomic profiling analysis publication-title: Bioresour. Technol. – volume: 139 start-page: 80 year: 2013 end-page: 86 ident: b0225 article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, publication-title: Bioresour. Technol. – volume: 520 start-page: 666 year: 2015 end-page: 669 ident: b0145 article-title: Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr publication-title: Nature. – volume: 315 start-page: 123888 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0100 article-title: A study on the nitrogen removal efficacy of bacterium Acinetobacter tandoii MZ-5 from a contaminated river of Shenzhen, Guangdong Province publication-title: Bioresource Technology doi: 10.1016/j.biortech.2020.123888 – volume: 50 start-page: 525 issue: 5-6 year: 1984 ident: 10.1016/j.biortech.2021.126423_b0115 article-title: Aerobic denitrification–old wine in new bottles? publication-title: Antonie van Leeuwenhoek. doi: 10.1007/BF02386224 – volume: 167 start-page: 456 year: 2014 ident: 10.1016/j.biortech.2021.126423_b0010 article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp HN-02 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.001 – volume: 285 year: 2019 ident: 10.1016/j.biortech.2021.126423_b0215 article-title: Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121360 – year: 1998 ident: 10.1016/j.biortech.2021.126423_b0005 – volume: 16 start-page: 8008 issue: 4 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0065 article-title: Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16048008 – volume: 316 start-page: 123922 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0090 article-title: Aerobic denitrifying bacterial communities drive nitrate removal: Performance, metabolic activity, dynamics and interactions of core species publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2020.123922 – volume: 319 year: 2021 ident: 10.1016/j.biortech.2021.126423_b0195 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by a novel isolated Pseudomonas mendocina X49 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2020.124198 – volume: 288 year: 2019 ident: 10.1016/j.biortech.2021.126423_b0180 article-title: Simultaneous nitrification and denitrification by a novel isolated Pseudomonas sp. JQ-H3 using polycaprolactone as carbon source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121506 – volume: 175 start-page: 2000 issue: 4 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0075 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1406-0 – volume: 98 start-page: 179 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0125 article-title: Bioaugmentation and quorum sensing disruption as solutions to increase nitrate removal in sequencing batch reactors treating nitrate-rich wastewater publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.06.007 – volume: 128 start-page: 1261 issue: 5 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0110 article-title: Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14476 – volume: 274 start-page: 56 year: 2019 ident: 10.1016/j.biortech.2021.126423_b0200 article-title: Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.052 – start-page: 731 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0205 – volume: 302 start-page: 122799 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0080 article-title: Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122799 – volume: 239 start-page: 66 year: 2017 ident: 10.1016/j.biortech.2021.126423_b0045 article-title: Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.125 – volume: 127 start-page: 201 issue: 2 year: 2019 ident: 10.1016/j.biortech.2021.126423_b0025 article-title: Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2018.07.025 – volume: 124 start-page: 564 issue: 5 year: 2017 ident: 10.1016/j.biortech.2021.126423_b0060 article-title: Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2017.06.008 – volume: 193 start-page: 227 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0210 article-title: Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.075 – volume: 301 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0190 article-title: Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122749 – volume: 520 start-page: 666 issue: 7549 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0145 article-title: Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr publication-title: Nature. doi: 10.1038/nature14180 – volume: 801 start-page: 149319 year: 2021 ident: 10.1016/j.biortech.2021.126423_b0140 article-title: A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs) publication-title: Sci Total Environ. doi: 10.1016/j.scitotenv.2021.149319 – volume: 333 start-page: 125189 year: 2021 ident: 10.1016/j.biortech.2021.126423_b0030 article-title: A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125189 – start-page: 22 year: 2021 ident: 10.1016/j.biortech.2021.126423_b0170 – year: 2020 ident: 10.1016/j.biortech.2021.126423_b0095 – volume: 244 start-page: 484 year: 2017 ident: 10.1016/j.biortech.2021.126423_b0120 article-title: Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.186 – volume: 102 start-page: 7244 issue: 15 year: 2011 ident: 10.1016/j.biortech.2021.126423_b0165 article-title: Aerobic denitrification by novel isolated strain using NO-(2)-N as nitrogen source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.101 – volume: 44 start-page: 391 issue: 2 year: 2021 ident: 10.1016/j.biortech.2021.126423_b0185 article-title: Nitrate removal performances of a new aerobic denitrifier, Acinetobacter haemolyticus ZYL, isolated from domestic wastewater publication-title: Bioprocess. Biosyst. Eng. doi: 10.1007/s00449-020-02451-0 – volume: 20 start-page: 643 issue: 4 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0070 article-title: Aerobic denitrification: a review of important advances of the last 30 years publication-title: Biotechnol. Bioproc. E. doi: 10.1007/s12257-015-0009-0 – volume: 220 start-page: 142 year: 2016 ident: 10.1016/j.biortech.2021.126423_b0155 article-title: Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp S1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.110 – volume: 117 start-page: 737 issue: 6 year: 2014 ident: 10.1016/j.biortech.2021.126423_b0135 article-title: Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4 publication-title: Journal of Bioscience and Bioengineering doi: 10.1016/j.jbiosc.2013.11.018 – volume: 34 start-page: 385 issue: 5 year: 2011 ident: 10.1016/j.biortech.2021.126423_b0160 article-title: Denitrification is a common feature among members of the genus Bacillus publication-title: Syst Appl Microbiol. doi: 10.1016/j.syapm.2011.02.003 – volume: 179 start-page: 421 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0035 article-title: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.057 – volume: 139 start-page: 80 year: 2013 ident: 10.1016/j.biortech.2021.126423_b0225 article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.189 – volume: 310 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0230 article-title: Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2020.123309 – volume: 260 start-page: 321 year: 2018 ident: 10.1016/j.biortech.2021.126423_b0235 article-title: Paracoccus versutus KS293 adaptation to aerobic and anaerobic denitrification: Insights from nitrogen removal, functional gene abundance, and proteomic profiling analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.03.123 – volume: 116 start-page: 266 year: 2012 ident: 10.1016/j.biortech.2021.126423_b0015 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp CPZ24 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.02.050 – volume: 717 start-page: 135181 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0040 article-title: Characterisation of Pseudomonas stutzeri T13 for aerobic denitrification: Stoichiometry and reaction kinetics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135181 – volume: 94 start-page: 1165 issue: 4 year: 2019 ident: 10.1016/j.biortech.2021.126423_b0240 article-title: Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification-aerobic denitrification publication-title: J. Chem. Technol. Biotech. doi: 10.1002/jctb.5863 – volume: 200 start-page: 493 year: 2016 ident: 10.1016/j.biortech.2021.126423_b0050 article-title: Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.064 – volume: 354 start-page: 758 year: 2018 ident: 10.1016/j.biortech.2021.126423_b0130 article-title: Degradation of oxytetracycline (OTC) and nitrogen conversion characteristics using a novel strain publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.032 – volume: 178 start-page: 471 issue: 6 year: 2002 ident: 10.1016/j.biortech.2021.126423_b0055 article-title: The roles of the three gene copies encoding hydroxylamine oxidoreductase in Nitrosomonas europaea publication-title: Arch. Microbiol. doi: 10.1007/s00203-002-0477-4 – volume: 113 start-page: 619 issue: 5 year: 2012 ident: 10.1016/j.biortech.2021.126423_b0020 article-title: Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2011.12.012 – volume: 213 start-page: 247 year: 2018 ident: 10.1016/j.biortech.2021.126423_b0245 article-title: Customizing the coefficients of urban domestic pollutant discharge and their driving mechanisms: Evidence from the Taihu Basin publication-title: China. J. Environ. Manag. – volume: 140 year: 2020 ident: 10.1016/j.biortech.2021.126423_b0220 article-title: Characterization on the aerobic denitrification process of Bacillus strains publication-title: Biomass Bioenergy. doi: 10.1016/j.biombioe.2020.105677 – volume: 161 start-page: 829 year: 2015 ident: 10.1016/j.biortech.2021.126423_b0150 article-title: Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, Acinetobacter sp SYF26 publication-title: Microbiol-Sgm. doi: 10.1099/mic.0.000047 – volume: 780 year: 2021 ident: 10.1016/j.biortech.2021.126423_b0175 article-title: Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146521 – volume: 78 start-page: 67 year: 2013 ident: 10.1016/j.biortech.2021.126423_b0105 article-title: Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2013.01.001 – volume: 272 start-page: 442 year: 2019 ident: 10.1016/j.biortech.2021.126423_b0085 article-title: Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.060 |
SSID | ssj0003172 |
Score | 2.6106677 |
Snippet | [Display omitted]
•A novel HN-AD Acinetobacter sp. was isolated with excellent nitrogen removal capability.•It tolerated high inorganic nitrogen (100 mg/L) and... The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126423 |
SubjectTerms | Acinetobacter Aerobic denitrification Aerobiosis ammonium Ammonium Compounds ammonium nitrogen biochemical pathways Biological treatment carbon Denitrification Heterotrophic nitrification Heterotrophic Processes hydroxylamine nitrate nitrogen nitrate reductase Nitrification nitrite nitrogen nitrite reductase Nitrites Nitrogen Nitrogen removal functional enzyme Sewage sewage treatment sodium succinic acid temperature wastewater |
Title | Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant |
URI | https://dx.doi.org/10.1016/j.biortech.2021.126423 https://www.ncbi.nlm.nih.gov/pubmed/34838964 https://www.proquest.com/docview/2604456878 https://www.proquest.com/docview/2636411598 |
Volume | 347 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPbQ9VAX6oC3IlXrNPhK_ctyuQAtVubRIKy5WYntKEEpW2V1x45f0x3Ymjy0cgAOXHOxxZGXG48-Zb8aMffO5y0YC8igGDZEAEaIURjJSiQJwQkrX_ND_eaZm5-J0LudbbNrnwhCtsvP9rU9vvHXXMuy-5nBRFMNfBL6NpJAmWpWSc8pgF5pofYPb_zQP3B-bSAIKRyR9J0v4apAXxGhtghLxeDBGcBAnD21QDwHQZiM6fsvedAiST9pJ7rCtUO6y15M_dVdFI-yyl9P-GjfsuVNxcI_9nW4KNLf5l7wCPqHgOi1saucUxHbrJb84_R7T_yOOsJZfEmumWtXV4rJwHN1ATRSj9g1Z6XkWqJ6T4-jF7vUVaNqIZj2nNBaU5Os6x-cy3KAf4xuWO19co4bfsfPjo9_TWdRd0BA5PJatIkpSTXXm1BiCd7j6jY9FCNrjKcVImesAI628Mz4zWoQc8KwFuQoOP78MXiTv2XZZleEj4-AMQIYYWqdjASOVKp_FSQqIMFKPEHOfyV4r1nXVy-kSjWvb09SubK9NS9q0rTb32XAzbtHW73hyRNor3d6zRIubzJNjv_ZWYlHNFHvJylCtlxaPjQKxqtHmMZlECUToKcp8aE1sM-dEGISWSnx6xuw-s1cxJW80DLovbHtVr8MBQqpVftismUP2YnLyY3b2DzGIJHA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6kzpB2KNr0lbZpWaCrYlsiKWp0jQTOy0sTwOhCSHwkCgLJkG30z_TH9k4vJEOSIYsGPgSCd7z7jvcgwE-bmXTEfRaEPvYB99wFiR-JQEbSe8OFMPWF_vlczi75yUIstmDa5cJQWGUr-xuZXkvrtmXY7uZwmefD3wS-lSCXJnKVFIsXsE3VqfgAtifHp7N5L5BRRdbOBBwf0IQ7icI3B1lOQa21XyIcH4wRH4TRQzrqIQxa66KjN_C6BZFs0qzzLWy5YhdeTa6qtpCG24WdafeSG_bcKTr4Dv5N-xrNTQomKz2bkH-dzja1M_Jjm82K_Tn5FdIVEkNky64pcKZcV-XyOjcMJUFFUUbNH9LCstRRSSfDUJDd68uRuxHQWkaZLDiSbaoMvyv3F0UZ6wPd2fIWifweLo8OL6azoH2jITBoma0DylNN4tTIsXfWoABQNuTOxRYNFSVEFjs_iqU1yqYq5i7zaG75TDqD2y-c5dEHGBRl4T4B80Z5nyKMjpMx9yOZSJuGUeIRZCQWUeYeiI4q2rQFzOkdjVvdRard6I6amqipG2ruwbCft2xKeDw5I-mIru8xo0Y98-TcHx2XaCQzuV_SwpWblUbLkSNcVbF6bEwkOYL0BMd8bFisX3PEFaJLyT8_Y3XfYWd2cX6mz47np1_gZUi5HHVA3VcYrKuN20eEtc6-tSfoPxnaJyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Acinetobacter+indicus+ZJB20129+for+heterotrophic+nitrification+and+aerobic+denitrification+isolated+from+an+urban+sewage+treatment+plant&rft.jtitle=Bioresource+technology&rft.au=Ke%2C+Xia&rft.au=Liu%2C+Cong&rft.au=Tang%2C+Su-Qin&rft.au=Guo%2C+Ting-Ting&rft.date=2022-03-01&rft.eissn=1873-2976&rft.volume=347&rft.spage=126423&rft_id=info:doi/10.1016%2Fj.biortech.2021.126423&rft_id=info%3Apmid%2F34838964&rft.externalDocID=34838964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |