DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning

Abstract Motivation Protein model quality assessment is a key component of protein structure prediction. In recent research, the voxelization feature was used to characterize the local structural information of residues, but it may be insufficient for describing residue-level topological information...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 38; no. 7; pp. 1895 - 1903
Main Authors Guo, Sai-Sai, Liu, Jun, Zhou, Xiao-Gen, Zhang, Gui-Jun
Format Journal Article
LanguageEnglish
Published England Oxford University Press 28.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Motivation Protein model quality assessment is a key component of protein structure prediction. In recent research, the voxelization feature was used to characterize the local structural information of residues, but it may be insufficient for describing residue-level topological information. Design features that can further reflect residue-level topology when combined with deep learning methods are therefore crucial to improve the performance of model quality assessment. Results We developed a deep-learning method, DeepUMQA, based on Ultrafast Shape Recognition (USR) for the residue-level single-model quality assessment. In the framework of the deep residual neural network, the residue-level USR feature was introduced to describe the topological relationship between the residue and overall structure by calculating the first moment of a set of residue distance sets and then combined with 1D, 2D and voxelization features to assess the quality of the model. Experimental results on the CASP13, CASP14 test datasets and CAMEO blind test show that USR could supplement the voxelization features to comprehensively characterize residue structure information and significantly improve model assessment accuracy. The performance of DeepUMQA ranks among the top during the state-of-the-art single-model quality assessment methods, including ProQ2, ProQ3, ProQ3D, Ornate, VoroMQA, ProteinGCN, ResNetQA, QDeep, GraphQA, ModFOLD6, ModFOLD7, ModFOLD8, QMEAN3, QMEANDisCo3 and DeepAccNet. Availability and implementation The DeepUMQA server is freely available at http://zhanglab-bioinf.com/DeepUMQA/. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btac056