Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction
A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated w...
Saved in:
Published in | Journal of rare earths Vol. 31; no. 10; pp. 969 - 974 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Bmmaner-Emmett-Teller method (BET), Fou- rier-transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and H2-TPR characterizations. The Ni-CeO2 catalysts were exam- ined with respect to their catalytic performance for the reverse water-gas shift reaction, and their catalytic activities were ranked as: Ni-CeO2-CP (Na2CO3:NaOH=I:I)〉Ni-CeO2-CP(Na2CO3)〉Ni-CeO2-CP(NaOH)- Correlating to the characteristic results, it was found that the catalyst prepared by co-precipitation with mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant hadthe most amount of oxygen vacancies accompanied with highly dispersed Ni particles, which made the corresponding Ni-CeO2-CP(Na2CO3:NaOH=I: 1) catalyst exhibit the highest catalytic activity. While the precipitant of Na2CO3 or NaOH resulted in less or no oxygen vacancies in Ni-CeO2 catalysts. As a result, Ni-CeO2-CP(Na2CO3) and Ni-CeO2-CP(NaOH) catalysts presented poor catalytic performance. |
---|---|
Bibliography: | A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Bmmaner-Emmett-Teller method (BET), Fou- rier-transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and H2-TPR characterizations. The Ni-CeO2 catalysts were exam- ined with respect to their catalytic performance for the reverse water-gas shift reaction, and their catalytic activities were ranked as: Ni-CeO2-CP (Na2CO3:NaOH=I:I)〉Ni-CeO2-CP(Na2CO3)〉Ni-CeO2-CP(NaOH)- Correlating to the characteristic results, it was found that the catalyst prepared by co-precipitation with mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant hadthe most amount of oxygen vacancies accompanied with highly dispersed Ni particles, which made the corresponding Ni-CeO2-CP(Na2CO3:NaOH=I: 1) catalyst exhibit the highest catalytic activity. While the precipitant of Na2CO3 or NaOH resulted in less or no oxygen vacancies in Ni-CeO2 catalysts. As a result, Ni-CeO2-CP(Na2CO3) and Ni-CeO2-CP(NaOH) catalysts presented poor catalytic performance. 11-2788/TF reverse water-gas shift reaction; Ni-CeO2 catalyst; co-precipitation; oxygen vacancy; precipitant; rare earths |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(13)60014-9 |